Identifying Gradient Fields and Exact Differentials

1. Determine whether each of the vector fields below is conservative.

a)
$$\mathbf{F} = \langle xe^x + y, x \rangle$$

- b) $\mathbf{F} = \langle xe^x + y, x + 2 \rangle$
- c) $\mathbf{F} = \langle xe^x + y + x, x \rangle$

<u>Answer</u>: We know from lecture that if $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ is continuously differentiable for all x and y, then

 $M_y = N_x$ for all x and $y \implies \mathbf{F}$ is conservative.

Each of the fields in question is continuously differentiable for all x and y.

a) $M = xe^x + y$, N = x. $M_y = 1$, $N_x = 1$. The field is conservative.

b) $M = xe^x + y$, N = x + 2. $M_y = 1$, $N_x = 1$. The field is conservative.

c) $M = xe^x + y + x$, N = x. $M_y = 1$, $N_x = 1$. The field is conservative.

In fact, we can add any function of x to M and any function of y to N without affecting M_y and N_x .

2. Show $(xe^x + y) dx + x dy$ is exact.

<u>Answer</u>: We know from lecture that M dx + N dy is an exact differential if and only if $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ is a gradient field. To show \mathbf{F} is a gradient field, we must show that \mathbf{F} is continuously differentiable and $M_y = N_x$ for all x, y.

Indeed, **F** is continuously differentiable for all x, y by inspection. Here $M = xe^x + y$ and N = x, so $M_y = N_x = 1$. We conclude that $(xe^x + y) dx + x dy$ is exact.

- **3**. Compute the two dimensional curl of \mathbf{F} for each of the vector fields below.
- a) $\mathbf{F} = \langle x, xe^x + y \rangle$
- b) $\mathbf{F} = \mathbf{i} + \mathbf{j}$
- c) $\mathbf{F} = \langle xy^2, x^2y \rangle$

<u>Answer:</u> We know that if $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ then curl $\mathbf{F} = N_x - M_y$.

a) curl $\mathbf{F} = (e^x + xe^x) - 0 = e^x(1+x).$

(This looks similar to the conservative vector fields from previous problems, but its components have been swapped.)

- b) M = N = 1 so curl $\mathbf{F} = 0 0 = 0$.
- c) $N_x = 2xy$ and $M_y = 2yx$, so curl $\mathbf{F} = 0$.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.