18.02 Problem Set 11, Part II Solutions

1. We put the center of the sphere at the origin O as usual, and take the "North Pole" $N=(0,0, a)$ as the fixed point. Let P be an arbitrary point on the surface of the the sphere S, and D the straight-line distance from N to P. Then D is the length of a side of the triangle Δ ONP. The other two sides $\overline{O N}$ and $\overline{O P}$ both have length a and the angle between them is ϕ in spherical coordinates, so the Law of Cosines gives $D=a \sqrt{2}(1-\cos \phi)^{\frac{1}{2}}$. Then $\bar{D}=\frac{1}{\mathrm{SA}} \iint_{S} D d S$. We'll use the formula $\mathrm{SA}=4 \pi a^{2}$ for the surface area of the sphere. The integral $\iint_{S} D d S=\int_{0}^{2 \pi} \int_{0}^{\pi} a \sqrt{2}(1-\cos \phi)^{\frac{1}{2}} a^{2} \sin \phi d \phi d \theta$ $=2 \pi \sqrt{2} a^{3} \int_{0}^{\pi}(1-\cos \phi)^{\frac{1}{2}} \sin \phi d \phi=\left.2 \pi \sqrt{2} a^{3} \frac{2}{3}(1-\cos \phi)^{\frac{3}{2}}\right|_{0} ^{\pi}=\frac{16 \pi a^{3}}{3}$.
Dividing this by SA $=4 \pi a^{2}$, we get $\bar{D}=\frac{4 a}{3}$.
(As a check: \bar{D} clearly scales by a, i.e. $\bar{D}=K a$ for some constant $K . D=$ a when $\phi=\frac{\pi}{3}$, or at 30 degrees North latitude. Since there are more points on S below this latitude, we should have $K>1$. But $D_{\max }=2 a$ (when P is the South Pole), so we also must have $K<2$. So $K=\frac{4}{3}$ is at least in the correct range.
2. Limits (in spherical coordinates): ρ from 0 to a, ϕ from 0 to $\phi_{0}, \quad \theta$ from 0 to 2π.
If $d m$ is located at (x, y, z) then the force due to $d m$ is $d \mathbf{F}=G \frac{\langle x, y, z\rangle}{\rho^{3}} d m=G \frac{\langle x, y, z\rangle}{\rho^{3}} \delta d V=G \frac{\langle x, y, z\rangle}{\rho^{3}} d V$.
Let the total force $\mathbf{F}=\langle a, b, c\rangle$. By symmetry $a=b=0$.
We compute $c=\iiint_{D} G \frac{z}{\rho^{3}} d V=G \int_{0}^{2 \pi} \int_{0}^{\phi_{0}} \int_{0}^{a} \frac{\rho \cos \phi}{\rho^{3}} \rho^{2} \sin \phi d \rho d \phi d \theta$

$$
=G \int_{0}^{2 \pi} \int_{0}^{\phi_{0}} \int_{0}^{a} \cos \phi \sin \phi d \rho d \phi d \theta . .
$$

Inner integral: $a \cos \phi \sin \phi$. Middle integral: $a \sin ^{2} \phi_{0} / 2$. Outer integral:
 $G \pi a \sin ^{2} \phi_{0}$.
$\Rightarrow \mathbf{F}=\left\langle 0,0, G \pi a \sin ^{2} \phi_{0}\right\rangle$.
3. a) $T=$ disk of radius 1 at height $z=1, \quad \mathbf{n}=\mathbf{k}$.

On $T: \quad \mathbf{F} \cdot \mathbf{n}=1 \Rightarrow$ flux $=\iint_{T} \mathbf{F} \cdot \mathbf{n} d S=\iint_{T} d S=$ area $=\pi$.
b) See the picture. Let D_{1} be the volume bounded by S and T.

Let D_{2} be the volume bounded by T and U.
Remember we are consistently using upward normals and upward flux.
The divergence theorem gives
flux through S - flux through $T=\iiint_{D_{1}} \operatorname{div} \mathbf{F} d V=\iiint_{D_{1}} d V=\operatorname{volume}\left(D_{1}\right)$.
\Rightarrow flux through $S=$ volume $\left(D_{1}\right)+$ flux through $T=\operatorname{volume}\left(D_{1}\right)+$ 亿 Likewise, flux through T - flux through $U=\operatorname{volume}\left(D_{1}\right)$.
\Rightarrow flux through $U=\pi$ - volume $\left(D_{2}\right)$.
Computing volumes:
$D_{2}: \quad$ Volume $\left(D_{2}\right) \frac{1}{3}$ base \times height $=\frac{\pi}{3}$.

D_{1} : We do this at the end in two different ways. The answer is volume $\left(D_{1}\right)=$ $2 \pi\left(\frac{2 \sqrt{2}}{2}-\frac{5}{6}\right)=\frac{4 \pi \sqrt{2}}{3}-\frac{5 \pi}{3}$.
Thus we have, flux through $S=\operatorname{volume}\left(D_{1}\right)+\pi=\frac{4 \pi \sqrt{2}}{3}-\frac{2 \pi}{3}$.
Flux through $U=\pi$ - $\operatorname{volume}\left(D_{2}\right)=\frac{2 \pi}{3}$.
As promised we compute volume $\left(D_{1}\right)$ two different ways.
Method 1: $\operatorname{volume}\left(D_{1}\right)=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{\sec \phi}^{\sqrt{2}} \rho^{2} \sin \phi d \rho d \phi d \theta$.
(The ρ limits are from $z=1 \Leftrightarrow \rho=\sec \phi$.)
Inner integral: $\left.\frac{\rho^{3}}{3} \sin \phi\right|_{\sec \phi} ^{\sqrt{2}}=\frac{2 \sqrt{2}}{3} \sin \phi-\frac{\cos ^{-3} \phi}{3} \sin \phi$.
Middle integral: $-\frac{2 \sqrt{2}}{3} \cos \phi-\left.\frac{\cos ^{-2}}{6}\right|_{0} ^{\pi / 4}=\frac{2 \sqrt{2}}{3}\left(1-\frac{1}{\sqrt{2}}\right)+\frac{1}{6}(1-2)=\frac{2 \sqrt{2}}{3}-\frac{5}{6}$.
Outer integral: volume $\left(D_{1}\right)=2 \pi\left(\frac{2 \sqrt{2}}{2}-\frac{5}{6}\right)=\frac{4 \pi \sqrt{2}}{3}-\frac{5 \pi}{3}$.
Method 2: $\operatorname{volume}\left(D_{1}\right)=\operatorname{volume}\left(D_{1}+D_{2}\right)-\operatorname{volume}\left(D_{2}\right)$.
Volume $\left(D_{1}+D_{2}\right)$ is an easier integral than in method 1 .
$\operatorname{Volume}\left(D_{1}+D_{2}\right)=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}} \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi \frac{2 \sqrt{2}}{3}(1-\cos (\pi / 4))=\frac{4 \pi \sqrt{2}}{2}-\frac{4 \pi}{3}$.
$\operatorname{Using} \operatorname{volume}\left(D_{2}\right)=\pi / 3$ we get volume $\left(D_{1}\right)=\frac{4 \pi \sqrt{2}}{3}-\frac{5 \pi}{3} \quad($ same as method 1$)$
c) U is given by $z=\sqrt{x^{2}+y^{2}}=r$.
$\Rightarrow \mathbf{n} d S=\left\langle-z_{x},-z_{y}, 1\right\rangle d x d y \Rightarrow \mathbf{F} \cdot \mathbf{n} d S=z d x d y$
\Rightarrow flux $=\iint_{R} z d x d y=\int_{0}^{2 \pi} \int_{0}^{1} r^{2} d r d \theta=\frac{2 \pi}{3}$.

4. a)Use $\frac{\partial \rho}{\partial x}=\frac{x}{\rho}$, etc. $\Rightarrow \frac{\partial}{\partial x} \rho^{-1}=-\frac{x}{\rho^{3}}$ etc. $\Rightarrow \mathbf{F}=\boldsymbol{\nabla} f=-\left\langle\frac{x}{\rho^{3}}, \frac{y}{\rho^{3}}, \frac{z}{\rho^{3}}\right\rangle$.

Now use $\frac{\partial}{\partial x} x \rho^{-3}=\rho^{-3}-3 x^{2} \rho^{-5} \quad$ (and similarly for $\frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$).
$\Rightarrow \operatorname{div} \mathbf{F}=\left(-\rho^{-3}+3 x^{2} \rho^{-5}\right)+\left(-\rho^{-3}+3 y^{2} \rho^{-5}\right)+\left(-\rho^{-3}+3 z^{2} \rho^{-5}\right)=-3 \rho^{-3}+3 \rho^{2} \cdot \rho^{-5}=0$.
b) The divergence theorem does not apply because \mathbf{F} is not defined at 0 .

On $S: \quad \mathbf{n}=\frac{\langle x, y, z\rangle}{a}, \quad \mathbf{F}=\frac{\langle-x .-y,-z\rangle}{a^{3}}$.
$\Rightarrow \mathbf{F} \cdot \mathbf{n}=-\frac{1}{a^{2}} \Rightarrow$ flux $=-\frac{1}{a^{2}} \cdot$ area $=-\frac{1}{a^{2}} 4 \pi a^{2}=-4 \pi$.
c) Let S be any closed surface around 0 . Let S_{1} be a small sphere centered at 0 and completely insided S. Use outward normals for both surfaces (and be careful with signs).
D is the volume between S and S_{1}.
From part (a) we know $\operatorname{div} \mathbf{F}=0$, so the divergence theorem gives $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S-\iint_{S_{1}} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{D} \operatorname{div} \mathbf{F} d V=0$.
$\Rightarrow \iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S_{1}} \mathbf{F} \cdot \mathbf{n} d S=-4 \pi . \quad$ QED

5. Use the fact that ∇f is perpendicular to the iso-surface $f=c$, so that depending on whether ∇f points inward or outward, $\nabla f \cdot \mathbf{n}= \pm|\nabla f|$, where \mathbf{n} is the outward unit normal to S. Then apply the Divergence Theorem to get $\oiint_{S} \vec{\nabla} f \cdot \mathbf{n} d S=\iint_{G} \int \vec{\nabla} \cdot(\vec{\nabla} f) d V$, where G is the interior of S.
Substituting into the RHS integral then gives

$$
\pm \oiint_{S}|\nabla f| d S=\oiint_{S} \nabla f \cdot \mathbf{n} d S=\iint_{G} \int \nabla^{2} f d V
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

