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18.02 Problem Set 11, Part II Solutions 

1. We put the center of the sphere at the origin O as usual, and take the 
“North Pole” N = (0, 0, a) as the fixed point. Let P be an arbitrary point on 
the surface of the the sphere S, and D the straight-line distance from N to 
P . Then D is the length of a side of the triangle Δ ONP. The other two sides 
ON and OP both have length a and the angle between them is φ in spherical √
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2coordinates, so the Law of Cosines gives D Then
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D̄ = 1 D dS. We’ll use the formula SA = 4πa2 for the surface area of 
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¯ 4a = 4πa2, we get D = 

3 . 
¯ ¯(As a check: D clearly scales by a, i.e. D = Ka for some constant K. D = 

a when φ = π 
3 , or at 30 degrees North latitude. Since there are more points 

on S below this latitude, we should have K > 1. But Dmax = 2a (when P 
is the South Pole), so we also must have K < 2. So K = 4 is at least in the 

3 
correct range. 

2. Limits (in spherical coordinates): ρ from 0 to a, φ from 0 to φ0, θ 
from 0 to 2π. 

If dm is located at (x, y, z) then the force due to dm is 

dF = G
�x, y, z� 

dm = G
�x, y, z� 

= G
�x, y, z�

δ dV dV . 
ρ3 ρ3 ρ3 

Let the total force F = �a, b, c�. By symmetry a = b = 0. ��� � 2π � φ0 
� a z ρ cos φ 

We compute c = G
ρ3 

dV = G
ρ3 

ρ2 sin φ dρ dφ dθ � 2π
D� φ0 

� 0 0 0 
a 

= G cos φ sin φ dρ dφ dθ.. 
0 0 0 

Inner integral: a cos φ sin φ. Middle integral: a sin2 φ0/2. Outer integral: 
Gπa sin2 φ0. 

F = �0, 0, Gπa sin2 φ0�.⇒ 

3. a) T = disk of radius 1 at height z = 1, n = k.�� �� 
On T : F n = 1 flux = F n dS = dS = area = π.· ⇒ 

T 
· 

T 

b) See the picture. Let D1 be the volume bounded by S and T . 
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Let D2 be the volume bounded by T and U .


Remember we are consistently using upward normals and upward flux.


The divergence theorem gives
 ��� ��� 
flux through S - flux through T = divF dV = dV = volume(D1). 

D1 D1 

⇒ flux through S = volume(D1) + flux through T = volume(D1) + π 

Likewise, flux through T - flux through U = volume(D1). 

⇒ flux through U = π - volume(D2). 

Computing volumes: 
1 π 

D2: Volume(D2) base × height = . 
3 3 

D1: We do this at the end in two different ways. The answer is volume(D1) = 
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Thus we have, flux through S = volume(D1) + π = . 
3 

− 
3 

2π 
Flux through U = π - volume(D2) = . 

3 
As promised we compute volume(D1) two different ways. 

2π � π/4 � √2 

Method 1: volume(D1) = ρ2 sin φ dρ dφ dθ. 
0 0 sec φ 

(The ρ limits are from z = 1 ρ = sec φ.)⇔ 
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Middle integral: −
 cos φ −
 (1 − √
2
) + 
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=
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Outer integral: volume(D1) = 2π −
 −
 .
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Method 2: volume(D1) = volume(D1 + D2) - volume(D2). 

Volume(D1 + D2) is an easier integral than in method 1. 
2π � π/4 � √2 2

√
2 4π

√
2 4π 

ρ2 sin φ dρ dφ dθ = 2πVolume(D1+D2) = (1 − cos(π/4)) =
 .− 
33
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0 0 0 

5πUsing volume(D2) = π/3 we get volume(D1) = 4π
3 

√
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3 (same as method 1) 
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c) U is given by z = x2 + y2 = r. 

n dS = �−zx, −zy, 1� dx dy F n dS = z dx dy ⇒ �� � 2π �⇒ 
1 

· 

2π ⇒ flux = 
R 
z dx dy = r 2 dr dθ = . 

30 0 

∂ρ x ∂ x x y z 
4. a)Use 

∂x 
= 

ρ 
, etc. ⇒ 

∂x 
ρ−1 = −

ρ3 
etc. ⇒ F = �f = − 

ρ3 
,
ρ3 

,
ρ3 

. 

∂ 
= ρ−3 2ρ−5 ∂ ∂Now use xρ−3 − 3x (and similarly for 

∂y and 
∂z ).∂x 

⇒ divF = (−ρ−3 + 3x2ρ−5) + (−ρ−3 + 3y2ρ−5) + (−ρ−3 + 3z2ρ−5) = −3ρ−3 + 3ρ2 · ρ−5 = 0. QED 

b) The divergence theorem does not apply because F is not defined at 0. 

On S: n = 
�x, y, z�

, F = 
�−x. − 

3 

y, −z�
. 

a a
1 1 1 ⇒ F · n = −
a2 

⇒ flux = −
a2 

·area = −
a2 

4π a2 = −4π. 

c)Let S be any closed surface around 0. Let S1 be a small sphere centered

at 0 and completely insided S. Use outward normals for both surfaces (and

be careful with signs).


D is the volume between S and S1.


From part (a) we know divF = 0, so the divergence theorem gives
�� �� ��� 
F n dS − F n dS = divF dV = 0.· · 

S S1 D 

⇒ 
S 
F · n dS = 

S1 

F · n dS = −4π. QED 

5. Use the fact that �f is perpendicular to the iso-surface f = c, so that 
depending on whether �f points inward or outward, �f , where ·n = ± | �f |
n is the outward unit normal to S. Then apply the Divergence Theorem ��� � � � 
to get ��� n dS = � �f) dV , where G is the interior of S.��f · � · (�

S 
G 

Substituting into the RHS integral then gives 

± 
��� 

S 
�| �f | dS = 

��� 

S 
��f · n dS = 

� � � 
�2f dV. 

G 
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