Problems: Vector Fields in Space

Find the gravitational attraction of an upper solid half-sphere of radius a and center $(0,0,0)$ on a mass m_{0} at $(0,0,0)$. Assume this half-sphere has density $\delta=z$.

Answer: Draw a picture.
We follow the steps outlined in recitation, changing only the density.
The force is $\mathbf{F}=F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k}$. (This notation is unfortunately standard. The subscript indicates component, not partial derivative.) By symmetry we know $F_{x}=F_{y}=0$.
At (x, y, z) a small volume $d V$ has mass $d m=\delta(x, y, z) d V=z d V$. This mass $d m$ exerts a force $\frac{G m_{0} d m}{\rho^{2}} \frac{\langle x, y, z\rangle}{\rho}$ on the test mass. The z-component of this force is $\frac{z G m_{0} d m}{\rho^{3}}$, so $F_{z}=\iiint_{D} \frac{z G m_{0} z d V}{\rho^{3}}$.
The limits in spherical coordinates are: ρ from 0 to a, ϕ from 0 to $\pi / 2, \quad \theta$ from 0 to 2π. Recall that $z=\rho \cos \phi$. Then:
$F_{z}=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{a} G m_{0} \frac{z^{2}}{\rho^{3}} d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{a} G m_{0} \frac{\rho^{2} \cos ^{2} \phi}{\rho^{3}} \rho^{2} \sin \phi d \rho d \phi d \theta$
$=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{a} G m_{0} \rho \cos ^{2} \phi \sin \phi d \rho d \phi d \theta$.
Inner integral: $\frac{G m_{0} a^{2}}{2} \cos ^{2} \phi \sin \phi$
Middle integral: $\left.\frac{G m_{0} a^{2}}{2}\left(\frac{-\cos ^{3} \phi}{3}\right)\right|_{0} ^{\pi / 2}=\frac{G m_{0} a^{2}}{6}$
Outer integral: $\frac{G m_{0} \pi a^{2}}{3} \Rightarrow \mathbf{F}=\left\langle 0,0, G m_{0} \pi a^{2} / 3\right\rangle$.
Surprisingly, this is the same as the force exerted by a half-sphere with density $\sqrt{x^{2}+y^{2}}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

