Problems: Calculating Flux

1. Find the flux of $\mathbf{F}=\langle x, y, z\rangle$ through the surface $x^{2}+y^{2}+z^{2}=1$, where $z \geq 0$.

Answer: The surface in question is the upper unit half-sphere and \mathbf{F} is identical to the outward unit normal. Therefore, $\mathbf{F} \cdot \mathbf{n}=1$ and $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=$ Area $=2 \pi r^{2}$.
2. Find the flux of $\mathbf{F}=\langle 0, x, 0\rangle$ through the portion of the plane $x+z=1$ for which $x>0$, $0<y<1$ and $z>0$.
Answer: The surface in question is a rectangle in the first octant. It has constant normal $\langle 1,0,1\rangle$ which is everywhere orthogonal to \mathbf{F}, so $\mathbf{F} \cdot \mathbf{n}=0$ over the surface and the flux is 0 .

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

