Problems: Calculating Flux

1. Find the flux of $\mathbf{F} = \langle x, y, z \rangle$ through the surface $x^2 + y^2 + z^2 = 1$, where $z \ge 0$. **Answer:** The surface in question is the upper unit half-sphere and \mathbf{F} is identical to the outward unit normal. Therefore, $\mathbf{F} \cdot \mathbf{n} = 1$ and $\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \text{Area} = 2\pi r^2$.

2. Find the flux of $\mathbf{F} = \langle 0, x, 0 \rangle$ through the portion of the plane x + z = 1 for which x > 0, 0 < y < 1 and z > 0.

<u>Answer</u>: The surface in question is a rectangle in the first octant. It has constant normal $\langle 1, 0, 1 \rangle$ which is everywhere orthogonal to **F**, so **F** · **n** = 0 over the surface and the flux is 0.

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.