Problems: Flux Through Surfaces

Let $\mathbf{F}=\langle x, y, z\rangle$.

1. Find the flux of \mathbf{F} through the square with vertices $(0,0,0),(1,0,0),(1,1,0),(0,1,0)$.

Answer: The square in question lies in the plane $z=0$, so $\mathbf{n}=\langle 0,0,1\rangle . \mathbf{F} \cdot \mathbf{n}=z=0$ on the whole square, so the flux is zero.
2. Find the flux of \mathbf{F} through the square with vertices $(0,0,1),(1,0,1),(1,1,1),(0,1,1)$.

Answer: Again $\mathbf{n}=\langle 0,0,1\rangle$ and $\mathbf{F} \cdot \mathbf{n}=z$.

$$
\text { Flux }=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\int_{0}^{1} \int_{0}^{1} 1 d x d y=1
$$

3. Find the flux of \mathbf{F} through the surface $x^{2}+y^{2}=1$ with $0 \leq z \leq 1$.

Answer: Here $\mathbf{n}=\langle x, y, 0\rangle$, so $\mathbf{F} \cdot \mathbf{n}=x^{2}+y^{2}=1$. We can parametrize the surface by $x=\cos \theta, y=\sin \theta$ with $d S=d \theta d z$ and integrate, or we can observe that the result of that calculation will just be the surface area of the cylinder. Flux $=2 \pi$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

