Problems: Flux Through Surfaces

Let $\mathbf{F} = \langle x, y, z \rangle$.

1. Find the flux of **F** through the square with vertices (0,0,0), (1,0,0), (1,1,0), (0,1,0). <u>Answer:</u> The square in question lies in the plane z = 0, so $\mathbf{n} = \langle 0, 0, 1 \rangle$. $\mathbf{F} \cdot \mathbf{n} = z = 0$ on the whole square, so the flux is zero.

2. Find the flux of **F** through the square with vertices (0,0,1), (1,0,1), (1,1,1), (0,1,1). **Answer:** Again $\mathbf{n} = \langle 0,0,1 \rangle$ and $\mathbf{F} \cdot \mathbf{n} = z$.

Flux =
$$\iint_S \mathbf{F} \cdot \mathbf{n} \, dS = \int_0^1 \int_0^1 1 \, dx \, dy = 1.$$

3. Find the flux of **F** through the surface $x^2 + y^2 = 1$ with $0 \le z \le 1$.

<u>Answer:</u> Here $\mathbf{n} = \langle x, y, 0 \rangle$, so $\mathbf{F} \cdot \mathbf{n} = x^2 + y^2 = 1$. We can parametrize the surface by $x = \cos \theta$, $y = \sin \theta$ with $dS = d\theta dz$ and integrate, or we can observe that the result of that calculation will just be the surface area of the cylinder. Flux = 2π .

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.