V9.3-4 Surface Integrals

3. Flux through general surfaces.

For a general surface, we will use $x y z$-coordinates. It turns out that here it is simpler to calculate the infinitesimal vector $d \mathbf{S}=\mathbf{n} d S$ directly, rather than calculate \mathbf{n} and $d S$ separately and multiply them, as we did in the previous section. Below are the two standard forms for the equation of a surface, and the corresponding expressions for $d \mathbf{S}$. In the first we use z both for the dependent variable and the function which gives its dependence on x and y; you can use $f(x, y)$ for the function if you prefer, but that's one more letter to keep track of.

$$
\begin{array}{ll}
z=z(x, y), & d \mathbf{S}=\left(-z_{x} \mathbf{i}-z_{y} \mathbf{j}+\mathbf{k}\right) d x d y \quad(\mathbf{n} \text { points "up") } \\
F(x, y, z)=c, & d \mathbf{S}= \pm \frac{\nabla F}{F_{z}} d x d y \quad \text { (choose the right sign) } \tag{11b}
\end{array}
$$

Derivation of formulas for $d \mathbf{S}$.

Refer to the pictures at the right. The surface S lies over its projection R, a region in the $x y$-plane. We divide up R into infinitesimal rectangles having area $d x d y$ and sides parallel to the $x y$-axes - one of these is shown. Over it lies a piece $d S$ of the surface, which is approximately a parallelogram, since its sides are approximately parallel.

The infinitesimal vector $d \mathbf{S}=\mathbf{n} d S$ we are looking for has
direction: perpendicular to the surface, in the "up" direction; magnitude: the area $d S$ of the infinitesimal parallelogram.

This shows our infinitesimal vector is the cross-product

$$
d \mathbf{S}=\mathbf{A} \times \mathbf{B}
$$

where \mathbf{A} and \mathbf{B} are the two infinitesimal vectors forming adjacent sides of the parallelogram. To calculate these vectors, from the definition of the partial derivative, we have

A lies over the vector $d x \mathbf{i}$ and has slope f_{x} in the \mathbf{i} direction, so $\mathbf{A}=d x \mathbf{i}+f_{x} d x \mathbf{k}$; \mathbf{B} lies over the vector $d y \mathbf{j}$ and has slope f_{y} in the \mathbf{j} direction, so $\mathbf{B}=d y \mathbf{j}+f_{y} d y \mathbf{k}$.

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
d x & 0 & f_{x} d x \\
0 & d y & f_{y} d y
\end{array}\right|=\left(-f_{x} \mathbf{i}-f_{y} \mathbf{j}+\mathbf{k}\right) d x d y
$$

which is (11a).
To get (11b) from (11a), , our surface is given by

$$
\begin{equation*}
F(x, y, z)=c, \quad z=z(x, y) \tag{12}
\end{equation*}
$$

where the right-hand equation is the result of solving $F(x, y, z)=c$ for z in terms of the independent variables x and y. We differentiate the left-hand equation in (12) with respect to the independent variables x and y, using the chain rule and remembering that $z=z(x, y)$:

$$
F(x, y, z)=c \quad \Rightarrow \quad F_{x} \frac{\partial x}{\partial x}+F_{y} \frac{\partial y}{\partial x}+F_{z} \frac{\partial z}{\partial x}=0 \quad \Rightarrow \quad F_{x}+F_{z} \frac{\partial z}{\partial x}=0
$$

from which we get

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}, \quad \text { and similarly }, \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}} .
$$

Therefore by (11a),

$$
d \mathbf{S}=\left(-\frac{\partial z}{\partial x} \mathbf{i}-\frac{\partial z}{\partial y} \mathbf{j}+1\right) d x d y=\left(\frac{F_{x}}{F_{z}} \mathbf{i}+\frac{F_{y}}{F_{z}} \mathbf{j}+1\right) d x d y=\frac{\nabla F}{F_{z}} d x d y
$$

which is (11b).
Example 3. The portion of the plane $2 x-2 y+z=1$ lying in the first octant forms a triangle S. Find the flux of $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ through S; take the positive side of S as the one where the normal points "up".

Solution. Writing the plane in the form $z=1-2 x+2 y$, we get using (11a),

$$
\begin{aligned}
d \mathbf{S} & =(2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}) d x d y \\
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{S}(2 x-2 y+z) d y d x \\
& =\iint_{R}(2 x-2 y+(1-2 x+2 y)) d y d x
\end{aligned}
$$

where R is the region in the $x y$-plane over which S lies. (Note that since the integration is to be in terms of x and y, we had to express z in terms of x and y for this last step.) To see what R is explicitly, the plane intersects the three coordinate axes respectively at $x=1 / 2, y=-1 / 2, z=1$. So R is the region pictured; our integral has integrand 1 , so its value is the area of R, which is $1 / 8$.

Remark. When we write $z=f(x, y)$ or $z=z(x, y)$, we are agreeing to parametrize our surface using x and y as parameters. Thus the flux integral will be reduced to a double integral over a region R in the $x y$-plane, involving only x and y. Therefore you must get rid of z by using the relation $z=z(x, y)$ after you have calculated the flux integral using (11a). Then determine the region R (the projection of S onto the $x y$-plane), and supply the limits for the iterated integral over R.

Example 4. Set up a double integral in the $x y$-plane which gives the flux of the field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ through that portion of the ellipsoid $4 x^{2}+y^{2}+4 z^{2}=4$ lying in the first octant; take \mathbf{n} in the "up" direction.

Solution. Using (11b), we have $d \mathbf{S}=\frac{\langle 8 x, 2 y, 8 z\rangle}{8 z} d x d y$. Therefore

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \frac{8 x^{2}+2 y^{2}+8 z^{2}}{8 z} d x d y=\iint_{S} \frac{1}{z} d x d y=\iint_{R} \frac{d x d y}{\sqrt{1-x^{2}-(y / 2)^{2}}}
$$

where R is the portion of the ellipse $4 x^{2}+y^{2}=4$ lying the the first quadrant.
The double integral would be most simply evaluated by making the change of variable $u=y / 2$, which would convert it to a double integral over a quarter circle in the $x u$-plane easily evaluated by a change to polar coordinates.
4. General surface integrals.* The surface integral $\iint_{S} f(x, y, z) d S$ that we introduced at the beginning can be used to calculate things other than flux.
a) Surface area. We let the function $f(x, y, z)=1$. Then the area of $S=\iint_{S} d S$.
b) Mass, moments, charge. If S is a thin shell of material, of uniform thickness, and with density (in gms/unit area) given by $\delta(x, y, z)$, then

$$
\begin{gather*}
\text { mass of } S=\iint_{S} \delta(x, y, z) d S \tag{13}\\
x \text {-component of center of mass }=\bar{x}=\frac{1}{\operatorname{mass} S} \iint_{S} x \cdot \delta d S \tag{14}
\end{gather*}
$$

with the y - and z-components of the center of mass defined similarly. If $\delta(x, y, z)$ represents an electric charge density, then the surface integral (13) will give the total charge on S.
c) Average value. The average value of a function $f(x, y, z)$ over the surface S can be calculated by a surface integral:

$$
\begin{equation*}
\text { average value of } f \text { on } S=\frac{1}{\operatorname{area} S} \iint_{S} f(x, y, z) d S \tag{15}
\end{equation*}
$$

Calculating general surface integrals; finding $d S$.

To evaluate general surface integrals we need to know $d S$ for the surface. For a sphere or cylinder, we can use the methods in section 2 of this chapter.

Example 5. Find the average distance along the earth of the points in the northern hemisphere from the North Pole. (Assume the earth is a sphere of radius a.)

Solution. - We use (15) and spherical coordinates, choosing the coordinates so the North Pole is at $z=a$ on the z-axis. The distance of the point (a, ϕ, θ) from $(a, 0,0)$ is $a \phi$, measured along the great circle, i.e., the longitude line - see the picture). We want to find the average of this function over the upper hemisphere S. Integrating, and using (9), we get

$$
\iint_{S} a \phi d S=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} a \phi a^{2} \sin \phi d \phi d \theta=2 \pi a^{3} \int_{0}^{\pi / 2} \phi \sin \phi d \phi=2 \pi a^{3}
$$

(The last integral used integration by parts.) Since the area of $S=2 \pi a^{2}$, we get using (15) the striking answer: average distance $=a$.

For more general surfaces given in $x y z$-coordinates, since $d \mathbf{S}=\mathbf{n} d S$, the area element $d S$ is the magnitude of $d \mathbf{S}$. Using (11a) and (11b), this tells us

$$
\begin{array}{lc}
z=z(x, y), & d S=\sqrt{z_{x}^{2}+z_{y}^{2}+1} d x d y \\
F(x, y, z)=c, & d S=\frac{|\nabla F|}{\left|F_{z}\right|} d x d y \tag{16b}
\end{array}
$$

Example 6. The area of the piece S of $z=x y$ lying over the unit circle R in the $x y$-plane is calculated by (a) above and (16a) to be:

$$
\left.\iint_{S} d S=\iint_{R} \sqrt{y^{2}+x^{2}+1} d x d y=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{r^{2}+1} r d r d \theta=2 \pi \cdot \frac{1}{3}\left(r^{2}+1\right)^{3 / 2}\right]_{0}^{1}=\frac{2 \pi}{3}(2 \sqrt{2}-1)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

