Problems: Flux Through General Surfaces

1. Let $\mathbf{F}=-y \mathbf{i}+x \mathbf{k}$ and let S be the graph of $z=x^{2}+y^{2}$ above the unit square in the $x y$-plane. Find the upward flux of \mathbf{F} through S.

Answer: We can save time by noting that \mathbf{F} is a tangential vector field and the vectors in F are parallel to S.

Otherwise, for a surface $z=f(x, y)$ we know that (for the upward normal)

$$
\mathbf{n} d S=\left\langle-f_{x},-f_{y}, 1\right\rangle d x d y
$$

In this case, $\mathbf{n} d S=\langle-2 x,-2 y, 1\rangle d x d y$.
Then $\mathbf{F} \cdot \mathbf{n} d S=(2 x y-2 x y) d x d y=0 d x d y$.
Hence, Flux $=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=0$.
2. Let $\mathbf{F}=-y \mathbf{i}+x \mathbf{k}$ and let S be the graph of $z=x^{2}+y$ above the square with vertices at $(0,0,0),(2,0,0),(2,2,0)$ and $(0,2,0)$. Find the upward flux of \mathbf{F} through S.

Answer:

Figure 1: The surface $z=x^{2}+y$.
Step 1. Find $\mathbf{n} d S$: Here $\mathbf{n} d S=\left\langle-f_{x},-f_{y}, 1\right\rangle d x d y=\langle-2 x,-1,1\rangle d x d y$.
Step 2. $\mathbf{F} \cdot \mathbf{n} d S=\langle-y, x, 0\rangle \cdot\langle-2 x,-1,1\rangle d x d y=(2 x y-x) d x d y$.
Step 3. Flux $=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{R}(2 x y-x) d x d y$, where R is the region in the $x y$-plane below S, i.e. the region 'holding' the parameters x and y.
Step 4. Compute the integral:
Limits: inner x : from 0 to 2 , outer y : from 0 to 2 .
\Rightarrow flux $=\int_{0}^{2} \int_{0}^{2} 2 x y-x d x d y$.
Inner: $2(2 y-1)$.
Outer: $\left.2\left(y^{2}-y\right)\right|_{0} ^{2}=4=$ upward flux.

Note that this implies that the downward flux is -4 ; upward and downward flux are about the choice of $\mathbf{n}, \operatorname{not} \mathbf{F}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

