Problems: Flux Through a Paraboloid

Consider the paraboloid $z=x^{2}+y^{2}$. Let S be the portion of this surface that lies below the plane $z=1$. Let $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+(1-2 z) \mathbf{k}$.

Calculate the flux of \mathbf{F} across S using the outward normal (the normal pointing away from the z-axis).

Answer: First, draw a picture:

The surface S is a bowl centered on the z-axis. The outward normal \mathbf{n} points away from the outside of the bowl and downward. The region R is the shadow of the bowl - the unit circle in the $x y$-plane.

We know the z component of \mathbf{n} is negative, so $\mathbf{n} d S=\left\langle z_{x}, z_{y},-1\right\rangle d x d y=\langle 2 x, 2 y,-1\rangle d x d y$. Thus, $\mathbf{F} \cdot \mathbf{n} d S=\left(2 x^{2}+2 y^{2}+2 z-1\right) d x d y=(4 z-1) d x d y=\left(4 r^{2}-1\right) d x d y$.

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S & =\iint_{R}\left(4 r^{2}-1\right) d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(4 r^{2}-1\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2} d \theta \\
& =\pi
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

