General Formula for $\mathbf{n} d S$

Suppose S is a surface parametrized by x and y and \mathbf{N} is any vector normal to S (not necessarily unit length). Then $\mathbf{n} d S=\frac{\mathbf{N}}{\mathbf{N} \cdot \mathbf{k}} d x d y$. Here \mathbf{n} is the upward unit normal Example: for the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ with $\mathbf{N}=\langle x, y, z\rangle$, find $\mathbf{n} d S$.
Answer: $\mathbf{n} d S=\frac{\mathbf{N}}{\mathbf{N} \cdot \mathbf{k}} d x d y=\left\langle\frac{x}{z}, \frac{y}{z}, 1\right\rangle d x d y$.
(Just like if we wrote $z=\sqrt{a^{2}-x^{2}-y^{2}}, \quad \mathbf{n} d S=\left\langle-z_{x},-z_{y}, 1\right\rangle d x d y$.)

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

