Problems: Del Notation; Flux

1. Verify the divergence theorem if $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and S is the surface of the unit cube with opposite vertices $(0,0,0)$ and $(1,1,1)$.
2. Prove that $\frac{1}{2} \boldsymbol{\nabla}(\mathbf{F} \cdot \mathbf{F})=\mathbf{F} \times(\boldsymbol{\nabla} \times \mathbf{F})+(\mathbf{F} \cdot \boldsymbol{\nabla}) \mathbf{F}$, where $\langle P, Q, R\rangle \cdot \boldsymbol{\nabla}$ is the differential operator $P \frac{\partial}{\partial x}+Q \frac{\partial}{\partial y}+R \frac{\partial}{\partial z}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

