
� � � � � 

� � 

� � 

� � � � � � 

� � � � � � 

� � � � � � 

V10.2 The Divergence Theorem 

2. Proof of the divergence theorem. 

We give an argument assuming first that the vector field F has only a k -component: 
F = P (x, y, z)k . The theorem then says 

∂P 
(4) P k · n dS = dV . 

∂z S D 

The closed surface S projects into a region R in the xy-plane. We 
assume S is vertically simple, i.e., that each vertical line over the interior 
of R intersects S just twice. (S can have vertical sides, however — a 
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cylinder would be an example.) S is then described by two equations: 

(5) z = g(x, y) (lower surface); z = h(x, y) (upper surface) 

The strategy of the proof of (4) will be to reduce each side of (4) to a 
double integral over R; the two double integrals will then turn out to be 
the same. 

We do this first for the triple integral on the right of (4). Evaluating it by iteration, we 
get as the first step in the iteration, 

��� � � � h(x,y)∂P ∂P 
dV = dz dx dy 

∂z ∂z D R g(x,y) 

(6) = P (x, y, h)− P (x, y, g) dx dy 
R 

To calculate the surface integral on the left of (4), we use the formula for the surface area 
element dS given in V9, (13): 

dS = ±(−zx i − zy j + k) dx dy, 

where we use the + sign if the normal vector to S has a positive k-component, i.e., points 
generally upwards (as on the upper surface here), and the − sign if it points generally 
downwards (as it does for the lower surface here). 

This gives for the flux of the field P k across the upper surface S2, on which z = h(x, y), 

P k · dS = P (x, y, z) dx dy = P (x, y, h(x, y)) dx dy , 
S2 R R 

while for the flux across the lower surface S1, where z = g(x, y) and we use the − sign as 
described above, we get 

P k · dS = −P (x, y, z) dx dy = −P (x, y, g(x, y)) dx dy ; 
S1 R R 

adding up the two fluxes to get the total flux across S, we have 

P k · dS = P (x, y, h) dx dy − P (x, y, g) dx dy 
S R R 
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which is the same as the double integral in (6). This proves (4). � 

In the same way, if F = M(x, y, z) i and the surface is simple in the i direction, we can 
prove 

∂M 
(4′) M i · n dS = dV 

∂x S D 

while if F = N(x, y, z) j and the surface is simple in the j direction, 

∂N 
(4′′) N j · n dS = dV . 

∂y S D 

Finally, for a general field F = M i + N j + P k and a closed surface S which is simple in 
all three directions, we have only to add up (4), (4′), and (4′′). and we get the divergence 
theorem. 

If the domain D is not bounded by a closed surface which is simple in all three directions, 
it can usually be divided up into smaller domains Di which are bounded by such surfaces 
Si. Adding these up gives the divergence theorem for D and S, since the surface integrals 
over the new faces introduced by cutting up D each occur twice, with the opposite normal 
vectors n, so that they cancel out; after addition, one ends up just with the surface integral 
over the original S. 
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