Problems: Harmonic Functions and Averages

A function u is called harmonic if $\nabla^{2} u=u_{x x}+u_{y y}+u_{z z}=0$. In this problem we will see that the average value of a harmonic function over any sphere is exactly its value at the center of the sphere.

For simplicity, we'll take the center to be the origin and show the average is $u(0,0,0)$.
Let u be a harmonic function and S_{R} the sphere of radius R centered at the origin. The average value of u over S is given by $A=\frac{1}{4 \pi R^{2}} \iint_{S} u(x, y, z) d S$.

1. Write this integral explicitly using spherical coordinates.
2. Differentiate A with respect to R
3. Rewrite the formula in part (2) in terms of $\boldsymbol{\nabla} u \cdot \mathbf{n}$.
4. Use the divergence theorem to show $\frac{d A}{d R}=0$ and conclude the average $A=u(0,0,0)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

