Problems: Work Along a Space Curve

1. Find the work done by the force $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ in moving a particle from $(0,0,0)$ to $(2,4,8)$
(a) along a line segment
(b) along the path $\mathbf{r}=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$.

Answer:
(a) We use the parametrization $x=2 t, y=4 t, z=8 t$, where $0 \leq t \leq 1$. Other parametrizations should also work.

$$
\begin{aligned}
W & =\int_{C} M d x+N d y+P d z \\
& =\int_{C}-y d x+x d y+z d z \\
& =\int_{0}^{1}-4 t d t+2 t d t+8 t d t \\
& =\int_{0}^{1} 6 t d t=3
\end{aligned}
$$

(b) We use the parametrization we were given:

$$
\begin{aligned}
W & =\int_{C}-y d x+x d y+z d z \\
& =\int_{0}^{2}\left(-t^{2}\right) d t+t(2 t d t)+t^{3}\left(3 t^{2} d t\right) \\
& =\int_{0}^{2} 3 t^{5}+t^{2} d t=\frac{104}{3}
\end{aligned}
$$

Note that for this force field, work done is not path independent.
2. Let $\mathbf{F}=\nabla f$, where $f=\frac{1}{(x+y+z)^{2}+1}$. Find the work done by \mathbf{F} in moving a particle from the origin to infinity along a ray.
Answer: The fundamental theorem tells us that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=f\left(P_{1}\right)-f(0)$ if C goes from 0 to P_{1}. In this example $f(0)=1$, and as P_{1} goes to infinity $f\left(P_{1}\right)$ approaches 0 . Thus the work done is $0-1=-1$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

