V15.1 Del Operator

1. Symbolic notation: the del operator

To have a compact notation, wide use is made of the symbolic operator "del" (some call it "nabla"):

$$
\begin{equation*}
\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k} \tag{1}
\end{equation*}
$$

Recall that the "product" of $\frac{\partial}{\partial x}$ and the function $M(x, y, z)$ is understood to be $\frac{\partial M}{\partial x}$. Then we have

$$
\begin{equation*}
\operatorname{grad} f=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k} \tag{2}
\end{equation*}
$$

The divergence is sort of a symbolic scalar product: if $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$,

$$
\begin{equation*}
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z} \tag{3}
\end{equation*}
$$

while the curl, as we have noted, as a symbolic cross-product:

$$
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & P
\end{array}\right|
$$

Notice how this notation reminds you that $\nabla \cdot \mathbf{F}$ is a scalar function, while $\nabla \times \mathbf{F}$ is a vector function.

We may also speak of the Laplace operator (also called the "Laplacian"), defined by

$$
\begin{equation*}
\operatorname{lap} f=\nabla^{2} f=(\nabla \cdot \nabla) f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \tag{5}
\end{equation*}
$$

Thus, Laplace's equation may be written: $\nabla^{2} f=0$. (This is for example the equation satisfied by the potential function for an electrostatic field, in any region of space where there are no charges; or for a gravitational field, in a region of space where there are no masses.)

In this notation, the divergence theorem and Stokes' theorem are respectively

$$
\begin{equation*}
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V \tag{6}
\end{equation*}
$$

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}
$$

Two important relations involving the symbolic operator are:

$$
\begin{align*}
\operatorname{curl}(\operatorname{grad} f) & =\mathbf{0} & & \operatorname{div} \operatorname{curl} \mathbf{F}=0 \tag{7}\\
\nabla \times \nabla f & =\mathbf{0} & \nabla \cdot \nabla \times \mathbf{F} & =0
\end{align*}
$$

The first we have proved (it was part of the criterion for gradient fields); the second is an easy exercise. Note however how the symbolic notation suggests the answer, since we know that for any vector \mathbf{A}, we have

$$
\mathbf{A} \times \mathbf{A}=\mathbf{0}, \quad \mathbf{A} \cdot \mathbf{A} \times \mathbf{F}=0
$$

and $\left(7^{\prime}\right)$ says this is true for the symbolic vector ∇ as well.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

