Testing for a Conservative Field

Let $\mathbf{F}=\left(3 x^{2} y+a z\right) \mathbf{i}+x^{3} \mathbf{j}+\left(3 x+3 z^{2}\right) \mathbf{k}$.

1. For what value or values of a is \mathbf{F} conservative?

Answer: We know \mathbf{F} is conservative if it's continuously differentiable for all x, y, z and $\operatorname{curl} F=0$. We easily verify that \mathbf{F} is continuously differentiable as required.

$$
\operatorname{curl} F=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\left(3 x^{2} y+a z\right) & x^{3} & \left(3 x+3 z^{2}\right)
\end{array}\right|=0 \mathbf{i}-(3-a) \mathbf{j}+\left(3 x^{2}-3 x^{2}\right) \mathbf{k}=(a-3) \mathbf{j} .
$$

If $a=3, \operatorname{curl} \mathbf{F}=0$ and so \mathbf{F} must be conservative.
Answer: $a=3$.
2. Assuming a has the value(s) found in (1), find a potential function f for which $\mathbf{F}=\nabla f$.

Answer: As usual, there are two ways to find such a potential function. For variety, we'll use the second method.
Assume that $\mathbf{F}=\boldsymbol{\nabla} f$. Then $f_{x}=3 x^{2} y+3 z$, so we have $f=x^{3} y+3 x z+g(y, z)$ for some function g.
Combine this with the fact that $f_{y}=x^{3}$ to get $x^{3}+g_{y}=x^{3}$ so $g(y, z)=h(z)$ is constant with respect to y.
Finally, $f_{z}=3 x+h^{\prime}(z)=3 x+3 z^{2}$ implies $h(z)=g(y, z)=z^{3}+C$.
We conclude that $f(x, y, z)=x^{3} y+3 x z+z^{3}+C$.
We can now calculate $f_{x}=3 x^{2} y+3 z, f_{y}=x^{3}$ and $f_{z}=3 x+3 z^{2}$ to check that $\mathbf{F}=\boldsymbol{\nabla} f$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

