18.02 Practice Final 3hrs.

Problem 1. Given the points $P:(1,1,-1), Q:(1,2,0), R:(-2,2,2)$ find
a) $P Q \times P R$
b) a plane $a x+b y+c z=d$ trough P, Q and R

Problem 2. Let $\mathbf{A}=\left(\begin{array}{ccc}1 & 0 & c \\ 2 & c & 1 \\ 1 & -1 & 2\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right), \quad \mathbf{0}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right), \quad \mathbf{A}^{-1}=\left(\begin{array}{ccc}. & . & . \\ . & \cdot & . \\ . & \times & .\end{array}\right)$.
a) For what valu(s) of constant c will $\mathbf{A x}=0$ have a non-zero solution?
b) Take $c=2$, and tell what entry the inverse matrix has in the position market \times

Problem 3. The roll of Scotch tape has outer radius a and is fixed in position (i.e., does not turn). Its end P is originally at the point A; the tape is then pulled from the roll so the free portion makes a 45 -degree

angle with the horizontal.
Write the parametric equation $x=x(\theta) \quad y=y(\theta)$ for the curve C traced out by the point P as it moves. (Use vectore methods; θ is the angle shown)

Sketch the curve on the second picture, showing its behavior at its endpoints.
Problem 4. The position vectore of point P is $r=<3 \cos t, 5 \sin t, 4 \cos t>$.
a) Show its speed is constant.
b) At what point $A:(a, b, c)$ does P pass through the yz-plane?

Problem 5. Let $\omega=x^{2} y-x y^{3}$, and $P=(2,1)$
a)Find the directional derivative $\frac{d \omega}{d s}$ at P in the diraction of $\mathbf{A}=3 i+4 j$.
b) If you start at P and go a distance .01 in the diraction of \mathbf{A}, by approximately how much will ω change? (Give a decimal with one significant digit.)

Problem 6. a) Find the tangent plane at $(1,1,1)$ to the surface $z^{2}+2 y^{2}+2 z^{2}=5$; give the equation in the form $a z+b y+c z=d$ and simplify the coefficients.
b) What dihedral angle does the tangent plane make with the $x y$-plane? (Hint: consider the normal vectors of the two planes.)

Problem 7. Find the point on the plane $2 z+y-z=6$ which is closest to the origin, by using Lagrange multipliers. (Minimize the square of the distance. Only 10 points if you use some other method)
Problem 8. Let $\omega=f(x, y, z)$ with the constraint $g(x, y, z)=3$.
At the point $P:(0,0,0)$, we have $\nabla f=<1,1,2>$ and $\nabla g=<2,-1,-1>$, Find the value at P of the two quantities (show work):
a) $\left(\frac{\partial z}{\partial x}\right)_{y}$
b) $\left(\frac{\partial \omega}{\partial x}\right)_{y}$

Problem 9. Evaluate by changing the order of integration: $\int_{0}^{3} \int_{z^{3}}^{9} x e^{-y^{2}} d y d z$.
Problem 10. A plane region R is bounded by four semicircles of radius 1 . having ends at $(1,1),(1,=$ $1),(-1,1),(-1,-1)$ and centerpoints at $(2,0),(-2,0),(0,2),(0,-2)$.

Set up an iterated integral in polar coordinates for the moment of inertia of R about the origin; take the density $\delta=1$. Supply integrand and limits, but do not evaluate the integral.

Use symmetry to simplify the limits of integration.
Problem 11. a) In the $x y$-plane, let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$. Give in terms of P and Q the line integral representing the flux \mathbf{F} across a simple closed curve C, with outward-pointing normal.
b) Let $\mathbf{F}=a x \mathbf{i}+b y \mathbf{j}$. How should the constants a and b be related if the flux of \mathbf{F} over any simple closed curve C is equal to the area inside C ?

Problem 12. A solid hemisphere of radius 1 has its lower flat base on the $x y$-plane and center at the origin. Its density function is $\delta=z$. Find the force of gravitational attraction it exerts on a unit mass at the origin. Problem 13. Evaluate $\int_{C}(y-x) d z+(y-z) d z$ over the line segment C from $P:(1,1,1)$ to $Q:(2,4,8)$. Problem 14. a) Let $\mathbf{F}=a y^{2} \mathbf{i}+2 y(x+z) \mathbf{j}+\left(b y^{2}+z^{2}\right) \mathbf{k}$. For what values of the constants a and b will F be conservative? Show work.
b) Using these values, find a function $f(x, y, z)$ such that $\mathbf{F}=\nabla f$.
c) Using these values, give the equation of a surface S having the property : $\int_{P}^{Q} \mathbf{F} \cdot d r=0$ for any two points P and Q on the surface S.

Problem 15. Let S be the closed surface whose bottom face B is the unit disc in the $x y$-plane and whose upper surface is the paraboloid $z=1-x^{2}-y^{2}, z \geq 0$. Find the flux of $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ across U by using the divergence theorem.

Problem 16. Using the data of the preceding problem, calculate the flux of \mathbf{F} across U directly, by setting up the surface integral for the flux and evaluating the resulting double integral in the $x y$-plane.

Problem 17. An $x z$-cylinder in 3 -space is a surface given by an equation $f(x, z)=0$ in x and z alone; its section by any plane $y=c$ perpendicular to the y-axis is always the same $x z$-curve.
Show that if $\mathbf{F}=z^{2} \mathbf{i}+y^{2} \mathbf{j}+x z \mathbf{k}$ then $\oint_{C} \mathbf{F} \cdot d r=0$ for any simple closed curve C lying on an $x z$-cylinder. (Use Stokes' theorem)
Problem 18. $\int e^{-x^{2}} d x$ is not elementary but $I=\int_{0}^{\infty} e^{-x^{2}} d x$ can still be evaluated.
a) Evaluate the iterated integral $\int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}} e^{-y^{2}} d y d x$, in terms of I.
b) Then evaluate the integral in (a) by switching to polar coordinates. Comparing the two evaluations, what value do you get for I ?

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

