18.03 Recitation 22, April 29, 2010

Eigenvalues and Eigenvectors

1. We'll solve the system of equations $\left\{\begin{array}{llr}\dot{x} & = & -5 x-3 y \\ \dot{y} & = & 6 x+4 y\end{array}\right.$
(a) Write down the matrix of coefficients, A, so that we are solving $\dot{\mathbf{u}}=A \mathbf{u}$. What is its trace? Its determinant? Its characteristic polynomial $p_{A}(\lambda)=\operatorname{det}(A-\lambda I)$? Relate the trace and determinant to the coefficients of $p_{A}(\lambda)$.
We write $\mathbf{u}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$, so our equations become:

$$
\begin{aligned}
\dot{\mathbf{u}}(t) & =\left[\begin{array}{c}
\dot{x}(t) \\
\dot{y}(t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
-5 & -3 \\
6 & 4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] \\
& =A \mathbf{u}(t)
\end{aligned}
$$

The matrix A is then $\left[\begin{array}{cc}-5 & -3 \\ 6 & 4\end{array}\right]$. Its trace is $-5+4=-1$, its determinant is $(-5)(4)-(6)(-3)=-2$, and its characteristic polynomial is $(-\lambda-5)(4-\lambda)+18=$ $\lambda^{2}+\lambda-2$. The trace is minus one times the linear term, and the determinant is the constant term.
(b) Find the eigenvalues and then for each eigenvalue find a nonzero eigenvector. $\lambda^{2}+\lambda-2=(\lambda+2)(\lambda-1)$, so the eigenvalues are 1 and $-2 . A-I=\left[\begin{array}{cc}-6 & -3 \\ 6 & 3\end{array}\right]$, so $(A-I) v=0$ has a solution $\left[\begin{array}{c}1 \\ -2\end{array}\right] . A+2 I=\left[\begin{array}{cc}-3 & -3 \\ 6 & 6\end{array}\right]$, so $(A+2 I) v=0$ has a solution $\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
(c) Draw the eigenlines and discuss the solutions whose trajectories live on each. Explain why each eigenline is made up of three distinct non-intersecting trajectories. Begin to construct a phase portrait by indicating the direction of time on portions of the eigenlines. Pick a nonzero point on an eigenline and write down all the solutions to $\dot{\mathbf{u}}=A \mathbf{u}$ whose trajectories pass through that point.
The eigenlines are the lines that contain the solutions that run through the origin with constant direction. The lines have the form $c \mathbf{v}$ for $c \in \mathbb{R}, \mathbf{v}$ an eigenvector. The solutions have the form $c e^{\lambda t} \mathbf{v}$ for \mathbf{v} an eigenvector with eigenvalue λ. In our case, we have two lines: $y=-x$ and $y=-2 x$, with trajectories $\mathbf{u}_{1}(t)=c_{1} e^{t}\left[\begin{array}{c}1 \\ -2\end{array}\right]=e^{t}\left[\begin{array}{c}c_{1} \\ -2 c_{1}\end{array}\right]$, and $\mathbf{u}_{2}(t)=c_{2} e^{-2 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]=e^{-2 t}\left[\begin{array}{c}c_{2} \\ -c_{2}\end{array}\right]$. The three nonintersecting trajectories
arise because $e^{\lambda t}$ is always positive, and changing t does not switch between the parts of the line where c is positive, zero, or negative.

For each eigenvalue, the trajectory with positive c lies in the fourth quadrant, the trajectory with $c=0$ lies at the origin, and the trajectory with negative c lies in the second quadrant.
(d) Now study the solution $\mathbf{u}(t)$ such that $\mathbf{u}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Write $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as a linear combination of a vector from the first eigenline and a vector from the second eigenline. Use this decomposition to express the solution, and sketch its trajectory. What is the general solution with this trajectory?
$\left[\begin{array}{l}1 \\ 0\end{array}\right]=a\left[\begin{array}{c}1 \\ -2\end{array}\right]+b\left[\begin{array}{c}1 \\ -1\end{array}\right]$, so $a+b=1$ and $-2 a-b=0$. Combining these, we see that $a=-1$ and $b=2$. Then $\mathbf{u}(t)=a e^{t}\left[\begin{array}{c}1 \\ -2\end{array}\right]+b e^{-2 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-e^{t}+2 e^{-2 t} \\ 2 e^{t}-2 e^{-2 t}\end{array}\right]$. The general solution can be found by substituting $t-\alpha$ for t.
(e) Fill out the phase portrait.
2. Same sequence of steps for $\left\{\begin{array}{llr}\dot{x} & =4 x+3 y \\ \dot{y} & =-6 x-5 y\end{array}\right.$

In this case, $A=\left[\begin{array}{cc}4 & 3 \\ -6 & -5\end{array}\right]$. Its trace is $4-5=-1$, its determinant is $(4)(-5)-$ $(3)(-6)=-2$. Since this has the same trace and determinant as the previous problem, the characteristic polynomial is the same: $\lambda^{2}+\lambda-2=(\lambda+2)(\lambda-1)$.
$A-I=\left[\begin{array}{cc}3 & 3 \\ -6 & -6\end{array}\right]$, so one eigenvector for the eigenvalue 1 is $\left[\begin{array}{c}1 \\ -1\end{array}\right] . A+2 I=$ $\left[\begin{array}{cc}6 & 3 \\ -6 & -3\end{array}\right]$, so one eigenvector for the eigenvalue -2 is $\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
The eigenlines are $y=-x$ for the eigenvalue 1 , and $y=-2 x$ for the eigenvalue -2 . The trajectories have the form $c_{1} e^{t}\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $c_{2} e^{-2 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
As before, $\left[\begin{array}{l}1 \\ 0\end{array}\right]=-\left[\begin{array}{c}1 \\ -2\end{array}\right]+2\left[\begin{array}{c}1 \\ -1\end{array}\right]$, so one solution passing through $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is $2 e^{t}\left[\begin{array}{c}1 \\ -1\end{array}\right]-e^{-2 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
The phase portrait has the same eigenlines, but the flow is in the opposite direction.

MIT OpenCourseWare
http://ocw.mit.edu
18.03 Differential Equationsㄱ ㄱ

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

