18.03 Recitation 22, April 29, 2010

Eigenvalues and Eigenvectors

1. We'll solve the system of equations $\begin{cases} \dot{x} = -5x - 3y \\ \dot{y} = 6x + 4y \end{cases}$

(a) Write down the matrix of coefficients, A, so that we are solving $\dot{\mathbf{u}} = A\mathbf{u}$. What is its trace? Its determinant? Its characteristic polynomial $p_A(\lambda) = \det(A - \lambda I)$? Relate the trace and determinant to the coefficients of $p_A(\lambda)$.

We write $\mathbf{u}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$, so our equations become:

$$\dot{\mathbf{u}}(t) = \begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \end{bmatrix}$$
$$= \begin{bmatrix} -5 & -3 \\ 6 & 4 \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$
$$= A\mathbf{u}(t)$$

The matrix A is then $\begin{bmatrix} -5 & -3 \\ 6 & 4 \end{bmatrix}$. Its trace is -5 + 4 = -1, its determinant is (-5)(4) - (6)(-3) = -2, and its characteristic polynomial is $(-\lambda - 5)(4 - \lambda) + 18 = \lambda^2 + \lambda - 2$. The trace is minus one times the linear term, and the determinant is the constant term.

(b) Find the eigenvalues and then for each eigenvalue find a nonzero eigenvector.

$$\lambda^{2} + \lambda - 2 = (\lambda + 2)(\lambda - 1), \text{ so the eigenvalues are 1 and } -2. A - I = \begin{bmatrix} -6 & -3 \\ 6 & 3 \end{bmatrix},$$

so $(A - I)v = 0$ has a solution $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$. $A + 2I = \begin{bmatrix} -3 & -3 \\ 6 & 6 \end{bmatrix}$, so $(A + 2I)v = 0$ has
a solution $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(c) Draw the eigenlines and discuss the solutions whose trajectories live on each. Explain why each eigenline is made up of three distinct non-intersecting trajectories. Begin to construct a phase portrait by indicating the direction of time on portions of the eigenlines. Pick a nonzero point on an eigenline and write down all the solutions to $\dot{\mathbf{u}} = A\mathbf{u}$ whose trajectories pass through that point.

The eigenlines are the lines that contain the solutions that run through the origin with constant direction. The lines have the form $c\mathbf{v}$ for $c \in \mathbb{R}$, \mathbf{v} an eigenvector. The solutions have the form $ce^{\lambda t}\mathbf{v}$ for \mathbf{v} an eigenvector with eigenvalue λ . In our case, we have two lines: y = -x and y = -2x, with trajectories $\mathbf{u}_1(t) = c_1 e^t \begin{bmatrix} 1 \\ -2 \end{bmatrix} = e^t \begin{bmatrix} c_1 \\ -2c_1 \end{bmatrix}$,

and $\mathbf{u}_2(t) = c_2 e^{-2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = e^{-2t} \begin{bmatrix} c_2 \\ -c_2 \end{bmatrix}$. The three nonintersecting trajectories

arise because $e^{\lambda t}$ is always positive, and changing t does not switch between the parts of the line where c is positive, zero, or negative.

For each eigenvalue, the trajectory with positive c lies in the fourth quadrant, the trajectory with c = 0 lies at the origin, and the trajectory with negative c lies in the second quadrant.

(d) Now study the solution $\mathbf{u}(t)$ such that $\mathbf{u}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Write $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ as a linear combination of a vector from the first eigenline and a vector from the second eigenline. Use this decomposition to express the solution, and sketch its trajectory. What is the general solution with this trajectory?

 $\begin{bmatrix} 1\\0 \end{bmatrix} = a \begin{bmatrix} 1\\-2 \end{bmatrix} + b \begin{bmatrix} 1\\-1 \end{bmatrix}, \text{ so } a + b = 1 \text{ and } -2a - b = 0. \text{ Combining these, we see}$ that a = -1 and b = 2. Then $\mathbf{u}(t) = ae^t \begin{bmatrix} 1\\-2 \end{bmatrix} + be^{-2t} \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} -e^t + 2e^{-2t}\\2e^t - 2e^{-2t} \end{bmatrix}.$ The general solution can be found by substituting $t - \alpha$ for t.

(e) Fill out the phase portrait.

2. Same sequence of steps for
$$\begin{cases} \dot{x} = 4x + 3y \\ \dot{y} = -6x - 5y \end{cases}$$
In this case $A = \begin{bmatrix} 4 & 3 \\ 4 & 3 \end{bmatrix}$ Its trace is $4 - 5 = -1$ its

In this case, $A = \begin{bmatrix} 4 & 3 \\ -6 & -5 \end{bmatrix}$. Its trace is 4 - 5 = -1, its determinant is (4)(-5) - (3)(-6) = -2. Since this has the same trace and determinant as the previous problem, the characteristic polynomial is the same: $\lambda^2 + \lambda - 2 = (\lambda + 2)(\lambda - 1)$. $A - I = \begin{bmatrix} 3 & 3 \\ -6 & -6 \end{bmatrix}$, so one eigenvector for the eigenvalue 1 is $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$. $A + 2I = \begin{bmatrix} 6 & 3 \\ -6 & -3 \end{bmatrix}$, so one eigenvector for the eigenvalue -2 is $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$. The eigenlines are y = -x for the eigenvalue 1, and y = -2x for the eigenvalue -2. The trajectories have the form $c_1e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $c_2e^{-2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. As before, $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = -\begin{bmatrix} 1 \\ -2 \end{bmatrix} + 2\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, so one solution passing through $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is $2e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix} - e^{-2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

The phase portrait has the same eigenlines, but the flow is in the opposite direction.

18.03 Differential Equations Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.