MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem set 9, Solution keys

1. Birkhoff-Rota pp. 135-136, Theorem 1 and Example 3.

Folia of Descartes are in figure 5.2.
2. (a) Suppose not. This means at least one of the inequalities $f>0, f<0, g>0, g<0$ holds at $\left(x_{1}, y_{1}\right)$. Without loss of generality, let $f\left(x_{1}, y_{1}\right)=-2 \alpha<0$. (other cases are similar). By continuity, $f(x(t), y(t))<-\alpha$ for $t>T$ for some large $T>0$.
Hence, $x^{\prime}(t) \leq-\alpha$ for $t>T$, and $x(t) \leq-\alpha t+\beta$ for some β for $t>T$.
Then $x(t) \rightarrow-\infty$ as $t \rightarrow \infty$, which contradicts that $x(t) \rightarrow x_{1}$.
(b) Without loss of generality, let $x_{0}=y_{0}=0$.

Let $F(t)=f(x t, y t)$ in a disk $r<\delta$ for some $\delta>0$. Hence $r=\sqrt{x^{2}+y^{2}}$.
By the Mean Value Theorem, $F(1)-F(0)=F^{\prime}(\tau)$ for some $0<\tau<1$.
And, $F^{\prime}(\tau)=f_{x}(x \tau, y \tau) x+f_{y}(x \tau, y \tau) y$.
Since f_{x} and f_{y} are continuous, $\left|f_{x}(x \tau, y \tau)-f_{x}(0,0)\right|<\epsilon(r),\left|f_{y}(x \tau, y \tau)-f_{y}(0,0)\right|<\epsilon(r)$ and $\epsilon(r) \rightarrow 0$ as $r \rightarrow 0$.
Therefore $a \rightarrow f_{x}(0,0), \quad b \rightarrow f_{y}(0,0)$, as $r \rightarrow 0$. A similar argument applies to g.
3. $(0,0)$ unstable singular node $\left(\frac{3}{2}, 0\right),\left(0, \frac{3}{2}\right)$ saddles.
$(1,1)$ stable nodes.

4. $(0,0),(0,3)$ saddles. $(1,2)$ stable focus.

5. (a) Birkhoff-Rota pp. 153. Theorem 5.
(b) Let $E(x)=x^{2}$ a Lyapunov function. $E(0)=0$ and $E(x)>0$ for $x \neq 0$.

And $\dot{E}(x)=2 x f(x)<0$ for $x \neq 0$ and x near 0 since $f^{\prime}(0)<0$.
Therfore 0 is asymptotically stable.
6. (a) In addition to $x=0, x=\frac{1}{n \pi}, n=1,2,3, \ldots$ are critical points. Let $o<|x(0)| \ll 1$ so that $\frac{1}{(n+1) \pi}<|x(0)| \leq \frac{1}{n \pi}$ for some n large.
Then $\frac{1}{(n+1) \pi}<|x(t)|<\frac{1}{n \pi}$ for all t since a non-stationary solution cannot pass through a critical point.
Therefore $|x(t)|<\frac{n+1}{n}|x(0)| \leq 2|x(0)|$, and 0 is stable.
Take $x_{n}(0)=\frac{1}{n \pi}, n=1,2,3 \ldots$. Then $x_{n}(t)=\frac{1}{n \pi}$ for all t . So, 0 is not asymptotically stable.
(b) The linear system is $\binom{x}{y}^{\prime}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\binom{x}{y}$

The solutions are $x(t)=a+b t, y(t)=b$. Therefore $(0,0)$ is unstable.
For the nonlinear system, let $E(x, y)=x^{4}+2 y^{2}$. Then, $E(0,0)=0, E(x, y)>0$ for $(x, y) \neq(0,0)$.
$\dot{E}(x, y)=4 x^{3}\left(y-x^{3}\right)+4 y\left(-x^{3}\right)=-4 x^{6} \leq 0$. So, $(0,0)$ is stable.

