18.034 Honors Differential Equations Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem set 9, Solution keys

- Birkhoff-Rota pp. 135-136, Theorem 1 and Example 3. Folia of Descartes are in figure 5.2.
- 2. (a) Suppose not. This means at least one of the inequalities f > 0, f < 0, g > 0, g < 0 holds at (x_1, y_1) . Without loss of generality, let $f(x_1, y_1) = -2\alpha < 0$. (other cases are similar). By continuity, $f(x(t), y(t)) < -\alpha$ for t > T for some large T > 0. Hence, $x'(t) \leq -\alpha$ for t > T, and $x(t) \leq -\alpha t + \beta$ for some β for t > T. Then $x(t) \to -\infty$ as $t \to \infty$, which contradicts that $x(t) \to x_1$.
 - (b) Without loss of generality, let $x_0 = y_0 = 0$. Let F(t) = f(xt, yt) in a disk $r < \delta$ for some $\delta > 0$. Hence $r = \sqrt{x^2 + y^2}$. By the Mean Value Theorem, $F(1) - F(0) = F'(\tau)$ for some $0 < \tau < 1$. And, $F'(\tau) = f_x(x\tau, y\tau)x + f_y(x\tau, y\tau)y$. Since f_x and f_y are continuous, $|f_x(x\tau, y\tau) - f_x(0, 0)| < \epsilon(r)$, $|f_y(x\tau, y\tau) - f_y(0, 0)| < \epsilon(r)$ and $\epsilon(r) \to 0$ as $r \to 0$. Therefore $a \to f_x(0, 0)$, $b \to f_y(0, 0)$, as $r \to 0$. A similar argument applies to g.
- 3. (0,0) unstable singular node
 - $(\frac{3}{2}, 0), (0, \frac{3}{2})$ saddles.
 - (1,1) stable nodes.

- 4. (0,0), (0,3) saddles.
 - (1,2) stable focus.

- 5. (a) Birkhoff-Rota pp. 153. Theorem 5.
 - (b) Let $E(x) = x^2$ a Lyapunov function. E(0) = 0 and E(x) > 0 for $x \neq 0$. And $\dot{E}(x) = 2xf(x) < 0$ for $x \neq 0$ and x near 0 since f'(0) < 0. Therfore 0 is asymptotically stable.
- 6. (a) In addition to $x = 0, x = \frac{1}{n\pi}, n = 1, 2, 3, ...$ are critical points. Let $o < |x(0)| \ll 1$ so that $\frac{1}{(n+1)\pi} < |x(0)| \le \frac{1}{n\pi}$ for some n large. Then $\frac{1}{(n+1)\pi} < |x(t)| < \frac{1}{n\pi}$ for all t since a non-stationary solution cannot pass through a critical point. Therefore $|x(t)| < \frac{n+1}{n}|x(0)| \le 2|x(0)|$, and 0 is stable. Take $x_n(0) = \frac{1}{n\pi}, n = 1, 2, 3...$ Then $x_n(t) = \frac{1}{n\pi}$ for all t. So ,0 is not asymptotically stable.
 - (b) The linear system is $\begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ The solutions are x(t) = a + bt, y(t) = b. Therefore (0,0) is unstable. For the nonlinear system, let $E(x,y) = x^4 + 2y^2$. Then, E(0,0) = 0, E(x,y) > 0 for $(x,y) \neq (0,0)$. $\dot{E}(x,y) = 4x^3(y-x^3) + 4y(-x^3) = -4x^6 \leq 0$. So, (0,0) is stable.