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LECTURE 29. PHASE PLANES I 

In the theory of u�� = f(t, u, u�), linear or nonlinear, u(t) often describes the position at time t of 
a point moving on the u axis and v(t) = u�(t) describes the velocity at time t of the point. Together, 
(u(t), v(t)) determines the status of the system. 

The behavior of the system can be described by the locus of the point (u(t), v(t)) in the (u, v)
plane. The (u, v)-plane associated to a differential equation this way is called the phase plane. The 
(parameterized) solution curve (u(t), v(t)) is called a trajectory, and its image is called an orbit or a 
trace. The main difference between a trajectory and an orbit is that the trajectory is equipped with 
the parameter t, which gives the orientation of the curve. 

In this note and the following, we study the qualitative behavior of the second-order (linear) dif
ferential equations or, more generally, the system of two (linear) differential equations by plotting 
the trajectories in the phase plane. 

In the simplest case, 

(29.1) u�� + pu� + qu = 0, p, q are constants, 

we have u� = v and v� = −pu� − qu. Hence, (u, v) satisfies � � � � � � 
u � 0 1 u = . 
v −q −p v 

We consider, more generally, a plane autonomous system of linear equations � � � � � � � � 
x � a b x a b(29.2) 
y 

= 
c d y

, A = 
c d

. 

The origin (x(t), y(t)) ≡ 0 is always a solution of (29.2), called a critical point, a stationary solu
tion, or an equilibrium of (29.2). If A is non-singular, that is |A| = 0� , then (0, 0) is the only critical 
point of (29.2). The case |A| = 0 is called degenerate. 

Let

p(λ) = λ2 − (tr A)λ + det A =: λ2 + pλ + q


be the characteristic polynomial of A. The secular equation of (29.2) is (29.1), and it establishes 
a connection between a linear plane autonomous system (29.2) and its associated second-order 
linear differential equation. 

We say (29.2) is asymptotically stable if all solutions tend to zero as t → ∞, stable if all solutions 
remain bounded as t →∞, and unstable otherwise. 

Linear equivalence. Two first-order linear systems 

x � x u � u = A , = B 
y y v v 

are said to be linearly equivalent if B = KAK−1 for a non-singular matrix K. 

We write �x = 
x , �u = 

u , and �u = K�x, �x = K−1�u. Then, �x � = A�x is transformed under 
y v 

the change of basis associated to K into 

�u � = K�x � = KA�x = (KAK−1)�u 

1 



� 

� � 

That is, linearly equivalent systems are associated with similar matrices A and KAK−1. Therefore, 
we may reduce a linear autonomous system (29.2) to a standard simplified “canonical” form under 
linear equivalence. 

Theorem 29.1. Unless � = (trA)2 − 4 det A = 0, the system (29.2) is equivalent to another system if 
and only if they have the same secular equation. 

Lemma 29.2. Two linearly equivalent systems have the same secular equation.


Proof. Let’s say two equivalent systems are described by the matrices A and B, and let B =

KAK−1. We compute


pB(λ) =|B − λI| = |KAK−1 − λI| 
=|KAK−1 − K(λI)K−1| = |K(A − λI)K−1| = |K| |A − λI| |K|−1 

=pA(λ). 

That is, their secular equations have the same characteristic polynomial. This completes the proof. 

Lemma 29.3. Unless a = d and b = c = 0, the system (29.2) is linearly equivalent to � � � � � � 
u � 0 1 u = , 
v −q −p v 

where p = −(a + d) and q = ad − bc. 

Proof. If b = 0 � we try the transformation u = x and v = ax + by. That is, � � � � � � 
u 
v 

= K 
x 
y 

, K = 
1 
a 

0 
b 

. 

Then, 

u� = x� = ax + by = v, 

v� = ax� + by� = av + b(cx + dy) = (a + d)v − (ad − bc)u. 

The second equation uses that u = x satisfies the secular equation u�� + pu� + qu = 0. This shows 
0 1that KAK−1 = . −q −p 

If c = 0� , similarly, we try the transformation u = y, v = cx + dy. 
Finally, if a =� d and b = c = 0, we try u = x + y, v = ax + by. � 

In the exceptional case, when a = d and b = c = 0, the system (29.2) reduces to � � � � � � 
x � a 0 x 
y 

= 0 a y
, 

and x and y satisfies the secular equation u�� − 2au� + a2u = 0. The system � � � � � � 
x � a 0 x = 
y 1 a y 

has the same secular equation, but the are not linearly equivalent.


Classification. We use the results in the previous subsections to study the behavior of (29.2). Let


p(λ) = λ2 − (a + d)λ + (ad − bc)λ =: λ2 + pλ + q, 

and 
� = p 2 − 4q = (a − d)2 + 4bc. 
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Focal points. If � < 0, then p(λ) has two distinct complex roots, say α ± iβ, where α, β ∈ R and 
β = 0. In this case, we choose the canonical form � � � � � � � 

u � = 
α −β u

, 
v β α v 

which has the same secular equation. The canonical form is easy to solve and it has solutions 

u(t) = c1e αt cos βt, v(t) = c2e αt sin βt. 

The solution of the canonical system satisfies 

(29.3) (u/c1)2 + (v/c2)2 = e 2αt . 

If, in addition α =� 0, then the locus (u(t), v(t)) represents a spiral. In fact, when t increases by 
2π/β, the point (u, v) returns to the same radial line from which it started, but the exponential 
factor multiplies its distance to the origin by e2πα/β . The critical point thus is called a focus. 

When p = −2α > 0, the curve (u(t), v(t)) spirals toward to the origin, and we say the origin is 
a stable focus. When p < 0, the curve diverges from the origin and it is an unstable focus. 

Vortex points. If α = 0, or equivalently, p = 0, but β =� 0 in the above situation, then (29.3) gives 
that the locus (u(t), v(t)) is an ellipse. In this case we say that the origin is a vortex point. In this 
case, each orbit is bounded, and hence the origin is neutrally stable. 

Figure 29.1. A focus (left) and a vortex (right). 

Nodal points. If � > 0 and q > 0, then p(λ) has two distinct real roots of the same sign, say λ1 and 
λ2. Let 0 < |λ1| < |λ2|. We choose the canonical form to be � � � � � � 

u � λ1 0 u 
v 

= 0 λ2 v
. 

It is immediate that the canonical system has the solutions 

u(t) = c1e λ1t , v(t) = c2e λ2t . 

By eliminating t from the above, we obtain 

v = kum , m = λ2/λ1 > 0, 

and these curves in the (u, v)-plane resemble the parabolas v = ku2. In this case, we say the origin 
is a nodal point. 

If p > 0, that is, if λ1 and λ2 are negative, then it gives a stable node, and if p < 0 then it gives 
an unstable node. 
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Figure 29.2. A node. 

Saddle points. If � > 0 and q < 0, then p(λ) has two real roots of opposite sign, say λ1 and λ2. We 
choose the same canonical form � � � � � � 

u � = 
λ1 0 u 

v 0 λ2 v 

as in the case of nodes. In this case, the solutions of this canonical system lead to 

u m v = k, m = −λ2/λ1 > 0. 

They resemble the hyperbolas uv = k. We say the origin is a saddle. A saddle point is always 
unstable, as in one principal direction the solution curves move toward the origin but in the other 
principal direction they move away from the origin. 

Figure 29.3. A saddle. 

Example 29.4. Check that for the two systems 

x� = 6x + y, x� = 6x + y, 

y� = 4x + 3y, y� = 4x + 3y 

the origin is an unstable note and a saddle, respectively. The roots of their characteristic polyno
mials are 2, 7 in the first case and −2, 3 in the second. Thus, the solutions may be written as 

x = ke2t x = ke7t x = ke−2t x = ke3t 

and and 
y = −4x y = x 2y = x y = 3x, 

where k is constant. 
In the first case, x| and |y| increase with t since the exponents are positive and the lines are |

2t 7tdirected away from the origin. As t → −∞ the term e is much larger than e and hence the 
orbits are tangent at the origin to the line y = −4x associated to λ = 2. As t → ∞, on the other 
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hand, e7t is much larger than e2t and the orbits behave like y = x at distinct points. See Figure 
29.2. 

In the second case the line 2y = x is associated with the negative exponent −2 and is directed 
toward the origin, while the other line is directed away from the origin. See Figure 29.3. 

The additional information helps to sketch the trajectories more precisely. 
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