MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.034 Recitation: March 3rd, 2009

1. Define an inner or "dot" product on $C[a, b]$ by

$$
\langle u, v\rangle=\int_{a}^{b} u(x) v(x) d x
$$

(Thus $\langle\cdot, \cdot\rangle$ is a positive definite symmetric bilinear form on $C[a, b]$.) Suppose $L[u]=u^{\prime \prime}+p u^{\prime}+q u$ is a given differential operator, and $M[u]$ is its adjoint. Show that $\langle L[u], v\rangle=\langle u, M[v]\rangle$ for all $u, v \in C^{2}[a, b]$ provided $u(a)=u(b)=v(a)=v(b)=0$.
2. Consider the equation $y^{\prime}=F(x, y)$, where $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuous function and satisfies the (two-sided) Lipschitz condition in y

$$
\left|F\left(x, y_{2}\right)-F\left(x, y_{1}\right)\right| \leq C\left|y_{2}-y_{1}\right| .
$$

Prove that if u and v are two solutions to the equation with $u\left(x_{0}\right)=v\left(x_{0}\right)$, then $u \equiv v$
3. Suppose w is a solution to $e^{\cos x} w^{\prime \prime}-x^{2} w+x^{3}=0$ with $w(0)=0$. Let $y=w-x$ and show that y cannot have either a positive maximum or negative minimum. Noting that $w^{\prime \prime}$ has the sign of $w-x$, sketch the graphs of a few solution curves with varying values of $w^{\prime}(0)$.
4. (Birkhoff-Rota, p. 57, \#2) Reduce the following ODE to self-adjoint form.
(a) $\left(1-x^{2}\right) u^{\prime \prime}-x u^{\prime}+\lambda u=0$.
(b) $x^{2} u^{\prime \prime}+x u^{\prime}+u=0$.

