## Finding $n$-th Roots

To solve linear differential equations with constant coefficients, we need to be able to find the real and complex roots of polynomial equations. Though a lot of this is done today with calculators and computers, one still has to know how to do an important special case by hand: finding the roots of

$$
z^{n}=\alpha,
$$

where $\alpha$ is a complex number, i.e., finding the $n$-th roots of $\alpha$. Polar representation will be a big help in this.

Let's begin with a special case: the $n$-th roots of unity: the solutions to

$$
z^{n}=1 .
$$

To solve this equation, we use polar representation for both sides, setting $z=r e^{i \theta}$ on the left, and using all possible polar angles on the right; using the exponential law to multiply, the above equation then becomes

$$
r^{n} e^{i n \theta}=1 \cdot e^{(2 k \pi i)}, \quad k=0, \pm 1, \pm 2, \cdots .
$$

Equating the absolute values and the polar angles of the two sides gives

$$
r^{n}=1, \quad n \theta=2 k \pi, \quad k=0, \pm 1, \pm 2, \cdots,
$$

from which we conclude that

$$
\begin{equation*}
r=1, \quad \theta=\frac{2 k \pi}{n}, \quad k=0,1, \cdots, n-1 . \tag{1}
\end{equation*}
$$

In the above, we get only the value $r=1$, since $r$ must be real and nonnegative. We don't need any integer values of $k$ other than $0, \cdots, n-1$, since they would not produce a complex number different from the above $n$ numbers. That is, if we add an, an integer multiple of $n$, to $k$, we get the same complex number:
$\theta^{\prime}=\frac{2(k+a n) \pi}{n}=\theta+2 a \pi ; \quad$ and $\quad e^{i \theta^{\prime}}=e^{i \theta}, \quad$ since $e^{2 a \pi i}=\left(e^{2 \pi i}\right)^{a}=1$.
We conclude from (1) therefore that

$$
\begin{equation*}
\text { the } n \text {-th roots of } 1 \text { are the numbers } e^{2 k \pi i / n}, k=0, \cdots, n-1 \text {. } \tag{2}
\end{equation*}
$$

This shows there are $n$ complex $n$-th roots of unity. They all lie on the unit circle in the complex plane, since they have absolute value 1 ; they are evenly spaced around the unit circle, starting with the root $z=1$; the angle between two consecutive roots is $2 \pi / n$. These facts are illustrated for the case $n=6$ in the figure below


Fig. 1. The six solutions to the equation $z^{6}=1$ lie on a unit circle in the complex plane.

From (2), we get another notation for the roots of unity ( $\zeta$ is the Greek letter "zeta"):

$$
\begin{equation*}
\text { the } n \text {-th roots of } 1 \text { are } 1, \zeta, \zeta^{2}, \cdots, \zeta^{n-1} \text {, where } \zeta=e^{2 \pi i / n} \text {. } \tag{3}
\end{equation*}
$$

We now generalize the above to find the $n$-th roots of an arbitrary complex number $w$. We begin by writing $w$ in polar form:

$$
w=r e^{i \theta} ; \quad \theta=\operatorname{Arg} w, 0 \leq \theta<2 \pi
$$

i.e., $\theta$ is the principal value of the polar angle of $w$. Then the same reasoning as we used above shows that if $z$ is an $n$-th root of $w$, then

$$
\begin{equation*}
z^{n}=w=r e^{i \theta} \quad \text { so } \quad z=\sqrt[n]{r} e^{i(\theta+2 k \pi) / n}, \quad k=0,1, \cdots, n-1 . \tag{4}
\end{equation*}
$$

Comparing this with (3), we see that these $n$ roots can be written in the suggestive form

$$
\begin{equation*}
\sqrt[n]{w}=z_{0}, z_{0} \zeta, z_{0} \zeta^{2}, \cdots, z_{0} \zeta^{n-1}, \quad \text { where } z_{0}=\sqrt[n]{r} e^{i \theta / n} \tag{5}
\end{equation*}
$$

As a check, we see that all of the $n$ complex numbers in (5) satisfy $z^{n}=w$ :

$$
\begin{aligned}
\left(z_{0} \zeta^{i}\right)^{n} & =z_{0}^{n} \zeta^{n i}=z_{0}^{n} \cdot 1^{i}, & & \text { since } \zeta^{n}=1, \text { by (3); } \\
& =w, & & \text { by the definition (5) of } z_{0} \text { and (4). }
\end{aligned}
$$

Example. Find in Cartesian form all values of a) $\sqrt[3]{1} \quad$ b) $\sqrt[4]{i}$
Solution. a) According to (3), the cube roots of 1 are $1, \omega$, and $\omega^{2}$, where

$$
\begin{aligned}
\omega & =e^{2 \pi i / 3}=\cos (2 \pi / 3)+i \sin (2 \pi / 3)=-\frac{1}{2}+i \frac{\sqrt{3}}{2} \\
\omega^{2} & =e^{-2 \pi i / 3}=\cos (-2 \pi / 3)+i \sin (-2 \pi / 3)=-\frac{1}{2}-i \frac{\sqrt{3}}{2}
\end{aligned}
$$

The greek letter $\omega$ ("omega") is traditionally used for this cube root. Note that for the polar angle of $\omega^{2}$ we used $-2 \pi / 3$ rather than the equivalent angle $4 \pi / 3$, in order to take advantage of the identities

$$
\cos (-x)=\cos (x) \quad \sin (-x)=-\sin (x)
$$

Note that $\omega^{2}=\bar{\omega}$. Another way to do this problem would be to draw the position of $\omega^{2}$ and $\omega$ on the unit circle and use geometry to figure out their coordinates.
b) To find $\sqrt[4]{i}$, we can use (5). We know that $\sqrt[4]{1}=1, i,-1,-i$ (either by drawing the unit circle picture or by using (3)). Therefore by (5), we get

$$
\begin{aligned}
\sqrt[4]{i} & =z_{0}, z_{0} i,-z_{0},-z_{0} i, & & \text { where } z_{0}=e^{\pi i / 8}=\cos (\pi / 8)+i \sin (\pi / 8) \\
& =a+i b,-b+i a,-a-i b, b-i a & & \text { where } z_{0}=a+i b=\cos (\pi / 8)+i \sin (\pi / 8)
\end{aligned}
$$

Example. Solve the equation $x^{6}-2 x^{3}+2=0$.
Solution. Treating this as a quadratic equation in $x^{3}$, we solve the quadratic by using the quadratic formula; the two roots are $1+i$ and $1-i$ (check this!), so the roots of the original equation satisfy either

$$
x^{3}=1+i \quad \text { or } \quad x^{3}=1-i .
$$

This reduces the problem to finding the cube roots of the two complex numbers $1 \pm i$. We begin by writing them in polar form:

$$
1+i=\sqrt{2} e^{\pi i / 4}, \quad 1-i=\sqrt{2} e^{-\pi i / 4}
$$

(Once again, note the use of the negative polar angle for $1-i$, which is more convenient for calculations.) The three cube roots of the first of these are (by (4)),

$$
\begin{aligned}
\sqrt[6]{2} e^{\pi i / 12} & =\sqrt[6]{2}(\cos (\pi / 12)+i \sin (\pi / 12)) \\
\sqrt[6]{2} e^{3 \pi i / 4} & =\sqrt[6]{2}(\cos (3 \pi / 4)+i \sin (3 \pi / 4)), \quad \text { since } \frac{\pi}{12}+\frac{2 \pi}{3}=\frac{3 \pi}{4} \\
\sqrt[6]{2} e^{-7 \pi i / 12} & =\sqrt[6]{2}(\cos (7 \pi / 12)-i \sin (7 \pi / 12)), \quad \text { since } \frac{\pi}{12}-\frac{2 \pi}{3}=-\frac{7 \pi}{12} .
\end{aligned}
$$

The second cube root can also be written as $\sqrt[6]{2}\left(\frac{-1+i}{\sqrt{2}}\right)=\frac{-1+i}{\sqrt[3]{2}}$.
This gives three of the cube roots. The other three are the cube roots of $1-i$, which may be found by replacing $i$ by $-i$ everywhere (i.e., taking the complex conjugate).

The cube roots can also be described according to (5) as
$z_{1}, z_{1} \omega, z_{1} \omega^{2}$ and $z_{2}, z_{2} \omega, z_{2} \omega^{2}$ where $z_{1}=\sqrt[6]{2} e^{\pi i / 12}, z_{2}=\sqrt[6]{2} e^{-\pi i / 12}$.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.03SC Differential Equations] [

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

