The Exponential Function

Of primary importance in this course is the exponential function

 $x(t)=e^{at},$

where *a* is a constant. We will assume you are completely familiar with the properties and graphs of this function.

Properties:

- 1. $e^0 = 1$.
- 2. $e^{at+c} = e^c e^{at}$.
- 3. e^{at} is never 0.
- 4. If a > 0 then $\lim_{t \to \infty} e^{at} = \infty$ and $\lim_{t \to -\infty} e^{at} = 0$.
- 5. If a < 0 then $\lim_{t \to \infty} e^{at} = 0$ and $\lim_{t \to -\infty} e^{at} = \infty$.
- 6. For any positive *a*, e^{at} grows much faster than any polynomial. Examples. $\lim_{t \to \infty} e^t / t^3 = \infty$, $\lim_{t \to \infty} t e^{-t} = 0$.

Graphs

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.