The Exponential Function

Of primary importance in this course is the exponential function

$$
x(t)=e^{a t},
$$

where a is a constant. We will assume you are completely familiar with the properties and graphs of this function.

Properties:

1. $e^{0}=1$.
2. $e^{a t+c}=e^{c} e^{a t}$.
3. $e^{a t}$ is never 0 .
4. If $a>0$ then $\lim _{t \rightarrow \infty} e^{a t}=\infty$ and $\lim _{t \rightarrow-\infty} e^{a t}=0$.
5. If $a<0$ then $\lim _{t \rightarrow \infty} e^{a t}=0$ and $\lim _{t \rightarrow-\infty} e^{a t}=\infty$.
6. For any positive $a, e^{a t}$ grows much faster than any polynomial.

Examples. $\lim _{t \rightarrow \infty} e^{t} / t^{3}=\infty, \quad \lim _{t \rightarrow \infty} t e^{-t}=0$.

Graphs

Fig. 1. Graphs of e^{t} and e^{-t}.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

