Part II Problems and Solutions

Problem 1: [Sinusoidal input and output]
(a) Express $\operatorname{Re}\left(\frac{e^{3 i t}}{\sqrt{3}+i}\right)$ in the form $a \cos (3 t)+b \sin (3 t)$. Then rewrite this in the form $A \cos (3 t-\phi)$. Now find this same answer using the following method. By finding its modulus and argument, write $\sqrt{3}+i$ in the form $A e^{i \phi}$. Then substitute this into $e^{3 i t} /(\sqrt{3}+i)$, and use properties of the exponential function to find B and ϕ such that $\frac{e^{3 i t}}{\sqrt{3}+i}=B e^{i(3 t-\phi)}$. Finally, take the real part of this new expression.
(b) Find a solution to the differential equation $\dot{z}+3 z=e^{2 i t}$ of the form $w e^{2 i t}$, where w is some complex number. What is the general solution?
(c) Find a solution of $\dot{x}+3 x=\cos (2 t)$ by relating this ODE to the one in (b). What is the general solution?

Solution: (a) $\frac{e^{3 i t}}{\sqrt{3}+i}=\frac{(\sqrt{3}-i)}{4}(\cos (3 t)+i \sin (3 t))$ has real part $\frac{\sqrt{3}}{4} \cos (3 t)+\frac{1}{4} \sin (3 t)$.
Form the right triangle with sides $a=\frac{\sqrt{3}}{4}$ and $b=\frac{1}{4}$. The hypotenuse is $A=1 / 2$ and the angle is $\phi=\pi / 6$.
$\sqrt{3}+i=2 e^{\pi i / 6}$ (by essentially the same triangle), so $\frac{e^{3 i t}}{\sqrt{3}+i}=\frac{1}{2} e^{i(3 t-\pi / 6)}: B=\frac{1}{2}, \phi=\frac{\pi}{6}$, and $\operatorname{Re}\left(B e^{i(3 t-\phi)}\right)=B \cos (3 t-\phi)$, so you get the same answer.
(b) Substituting $z=w e^{2 i t}, e^{2 i t}=w 2 i e^{2 i t}+3 w e^{2 i t}$, so $1=w(2 i+3)$ or $w=\frac{1}{2 i+3}$. Thus a solution of the desired form is $z_{p}=\frac{1}{2 i+3} e^{2 i t}$. The general solution is $z_{p}+c e^{-3 t}$.
(c) If $x=\operatorname{Re}(z)$, the real part of $\dot{z}+3 z=e^{2 i t}$ is $\dot{x}+3 x=\cos (2 t)$. So we are looking for $\operatorname{Re}\left(z_{p}\right)$, where z_{p} is the answer in part (b).
In polar form, $2 i+3=\sqrt{13} e^{i \phi}$, where $\phi=\tan ^{-1}(2 / 3)$.
Thus,

$$
z_{p}=\frac{1}{\sqrt{13}} e^{i(2 t-\phi)}
$$

We get

$$
x_{p}=\operatorname{Re}\left(z_{p}\right)=\frac{1}{\sqrt{13}} \cos (2 t-\phi)
$$

The general solution is then $x=x_{p}+c e^{-3 t}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

