## **Part II Problems and Solutions**

**Problem 1:** [Sinusoidal input and output]

(a) Express Re  $\left(\frac{e^{3it}}{\sqrt{3}+i}\right)$  in the form  $a\cos(3t) + b\sin(3t)$ . Then rewrite this in the form  $A\cos(3t-\phi)$ . Now find this same answer using the following method. By finding its modulus and argument, write  $\sqrt{3} + i$  in the form  $Ae^{i\phi}$ . Then substitute this into  $e^{3it}/(\sqrt{3}+i)$ , and use properties of the exponential function to find B and  $\phi$  such that  $\frac{e^{3it}}{\sqrt{3}+i} = Be^{i(3t-\phi)}$ . Finally, take the real part of this new expression.

(b) Find a solution to the differential equation  $\dot{z} + 3z = e^{2it}$  of the form  $we^{2it}$ , where w is some complex number. What is the general solution?

(c) Find a solution of  $\dot{x} + 3x = \cos(2t)$  by relating this ODE to the one in (b). What is the general solution?

Solution: (a) 
$$\frac{e^{3it}}{\sqrt{3}+i} = \frac{(\sqrt{3}-i)}{4}(\cos(3t)+i\sin(3t))$$
 has real part  $\frac{\sqrt{3}}{4}\cos(3t)+\frac{1}{4}\sin(3t)$ .

Form the right triangle with sides  $a = \frac{\sqrt{3}}{4}$  and  $b = \frac{1}{4}$ . The hypotenuse is A = 1/2 and the angle is  $\phi = \pi/6$ .

 $\sqrt{3} + i = 2e^{\pi i/6}$  (by essentially the same triangle), so  $\frac{e^{3it}}{\sqrt{3} + i} = \frac{1}{2}e^{i(3t - \pi/6)}$ :  $B = \frac{1}{2}$ ,  $\phi = \frac{\pi}{6}$ , and  $\operatorname{Re}(Be^{i(3t-\phi)}) = B\cos(3t-\phi)$ , so you get the same answer.

(b) Substituting  $z = we^{2it}$ ,  $e^{2it} = w2ie^{2it} + 3we^{2it}$ , so 1 = w(2i+3) or  $w = \frac{1}{2i+3}$ . Thus a solution of the desired form is  $z_p = \frac{1}{2i+3}e^{2it}$ . The general solution is  $z_p + ce^{-3t}$ .

(c) If x = Re(z), the real part of  $\dot{z} + 3z = e^{2it}$  is  $\dot{x} + 3x = \cos(2t)$ . So we are looking for  $\text{Re}(z_p)$ , where  $z_p$  is the answer in part (b).

In polar form,  $2i + 3 = \sqrt{13}e^{i\phi}$ , where  $\phi = \tan^{-1}(2/3)$ . Thus,

$$z_p = \frac{1}{\sqrt{13}} e^{i(2t-\phi)}$$

We get

$$x_p = \operatorname{Re}(z_p) = \frac{1}{\sqrt{13}} \cos(2t - \phi).$$

The general solution is then  $x = x_p + ce^{-3t}$ .

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.