First Order Response to Exponential Input

We start with an example of a linear constant coefficient ODE with exponential input signal.
Example 1. Solve $\dot{x}+2 x=4 e^{3 t}$.
Solution. We could use our integrating factor, but instead let's use the method of optimism, i.e., the inspired guess. The inspiration here is based on the fact that differentiation reproduces exponentials:

$$
\frac{d}{d t} e^{r t}=r e^{r t} .
$$

Since the right hand side is an exponential, maybe the output signal $x(t)$ will be also. Let's try

$$
x_{p}(t)=A e^{3 t} .
$$

This is not going to be the general solution, so we use the subscript p to indicate it is just one particular solution. We don't know what A is yet, but we will be led to its value by substitution. Substituting x_{p} into the DE we get

Left hand side: $\dot{x}_{p}+2 x_{p}=3 A e^{3 t}+2 A e^{3 t}=5 A e^{3 t}$.
Right hand side: $4 e^{3 t}$.
Equating the two sides we get

$$
5 A e^{3 t}=4 e^{3 t} \Rightarrow 5 A=4 \Rightarrow A=4 / 5
$$

So, we were led to the value of A and we have that one solution to the DE is

$$
x_{p}(t)=\frac{4}{5} e^{3 t} .
$$

The associated homogeneous equation $\dot{x}+2 x=0$ has general solution $x_{h}(t)=C e^{-2 t}$. By the superposition principle, we add x_{p} and x_{h} to get the general solution to our DE :

$$
x(t)=x_{p}(t)+x_{h}(t)=\frac{4}{5} e^{3 t}+C e^{-2 t} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations] [

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

