
18.03SC Differential Equations, Fall 2011 
Transcript – First-order Constant Coefficient Linear ODE's 

PROFESSOR: Hi everyone. Welcome back. So today, we're going to take a look at first-order linear 

differential equations with constant coefficients. And specifically, we're going to use integrating factors 

to solve them. So the equation that we're going to solve today is x dot plus kx equals 1.  

And then in part B we're going to change the right-hand side to e to the minus 5t. And then in part C, 

we're asked to use the superposition principle to solve x dot plus kx equals 4 plus 7e to the minus 5t. So 

I'll let you think about this for a moment, and I'll come back in a second.  

Hi, everyone. Welcome back. So I should mention that every first-order linear differential equation, 

whether it has constant coefficients or not, can always be solved using an integrating factor. However, in 

this case, we have a constant coefficient, which is particularly nice. And later on in the course, we're 

going to learn some even better ways, or quicker ways, to solve linear differential equations with 

constant coefficients. But for today, we're asked to use an integrating factor.  

So for part A, we have the equation x dot plus kx equals 1. And the first step is to compute the 

integrating factor. So the integrating factor, which I'll call g of t, it's always going to be an exponential of 

the integral of the function that appears in front of x.  

So in this case, the function is just a constant. It's k. So we have kdt, which gives us e to the kt. So once 

we have the integrating factor, we just multiply our equation through by g of t. And by construction, 

what the integrating factor does is it lets us combine these two terms on the left-hand side into an exact 

derivative.  

So these two terms are actually the time derivative of the product x times the integrating factor e to the 

kt. And then on the right-hand side we just have e to the kt. So we can just go ahead and integrate both 

sides of the equation.  

And when we do that, the right-hand side becomes the integral kt, which is 1 over k e to the kt plus a 

constant of integration. And now, just to isolate x, I could divide through by e to the kt. And I obtain 1 

over k plus a constant e to the minus kt. So here's the solution to the ODE. OK, so this concludes part A.  

For part B, we have the equation x dot plus kx equals e to the negative 5t. So if we take a look at this 

equation, the only thing that we've changed is the right-hand side. We haven't changed the left-hand 

side.  

And again, if we compute the integrating factor, well, we know that it's the same integrating factor as in 

part A. And the reason is that the integrating factor only depends on the left-hand side. It only depends 

on the linear terms. So I can multiply the equation through by the integrating factor again. And when I 

do this, I'll just combine the terms on the right-hand side.  

So this is e to the kt times e to the minus 5t. And again, by construction, the left-hand side is going to be 

the same as in part A, the time derivative of x times e to kt. And now we can go ahead and integrate 



both sides. OK, so if we integrate this, we end up getting 1 over k minus 5, e to the k minus 5t, plus a 

constant c.  

And if we step back and take a look at this for a second, we see that when k equals 5, we have a 

problem. Particularly, the denominator vanishes, which would give us 1 over 0. So this equation, this 

right-hand side, actually only holds when k is not equal to 5. So this is only valid for k not equal to five.  

So the question is, what happens when k equals to five? And in this case, we would have x, e to the kt, 

times the integral of 1dt, which would just give us t plus a constant c. So in this case, we would have t, e 

to the minus kt, plus c, e to the minus kt. And this is when k is equal to 5.  

Meanwhile, for k not equal to 5, well, we have the solution worked out already. So we can just isolate x, 

and divide through by e to the kt. And we have 1 over k minus 5, e to the minus 5t, plus c, e to the minus 

kt. And this concludes part B.  

So the solution for k equal to 5 is t, e to the minus kt, which would be e to the minus 5t, plus a constant 

c times e to the minus 5t. And when k is not equal to 5, we have 1 over k minus 5, e to the minus 5t, plus 

c, e to the minus kt.  

So I'd just like to point out a few things between the solutions for part A and for part B. First off, we note 

that both part A and part B share a common solution of the form constant c times e to the minus kt. So 

this is a term that appears in the solution for both part A and for part B. The reason is this can be 

thought of as the homogeneous solution to the differential equation. This is the term that solves the 

differential equation when the right-hand side is set to 0.  

Secondly, in part B, if we take a look, when k is not equal to 5, we have the term, which is a constant, 

times e to the minus 5t. However, when we have k equal to 5, what happens is we have a term which 

essentially occurs from forcing the differential equation on resonance, which gives us an extra factor of t 

times e to the minus 5t. And we'll see more about resonance in the future.  

OK, so for part c, we're asked to use superposition. To solve the differential equation x dot plus kx 

equals 4 plus 7e to the minus 5t. Now if we take a look at this differential equation, we already know the 

solution when the right-hand side is 1 and when the right-hand side is e to the minus 5t. So we've 

changed the right-hand side now so it's 4 times 1 plus 7 times e to the minus 5t.  

So what's the total solution going to be? Well, it's going to be four times our solution when the right-

hand side was 1, plus seven times the solution when the right-hand side was e to the minus 5t. This is 

one of the beautiful things about linear equations. When we add two forcings to the right-hand side, our 

total solution is just going to be the sum of the solutions to the individual terms.  

OK. So what this means is our solution, x, is going to be 4 times the solution when the right-hand side 

was 1. And in that case, it was 1 over k plus c, e to the minus kt, plus 7 times the solution when the right-

hand side was e to the minus 5t. And when k was not equal to 5, this becomes 1 over k minus 5, e to the 

minus 5t, plus c, e to the minus kt.  



So if we take a look at the sum of these two terms, I'll denote the two constants as c1 and c2. We 

actually have 4 times c1 plus 7 times c2. That's just going to give us a new constant, c3. So in general, 

this becomes 4 over k plus 1 over k minus 5, e to the minus 5t, plus a constant c, e to the minus kt. So I 

can just recombine the 4, c, e to the minus kt, and the 7, c, e to the minus kt. That together just gives me 

a new constant, c3, times e to the minus kt.  

And this is the solution when k is not equal to 5. When k equals to 5, what we do is we just replace this 

term with t, e to the minus kt. So this is when k is not equal to 5. It should be a 7 here.  

So I'll just conclude there. And for summary, we've taken a look at a first-order linear differential 

equation with a couple different right-hand sides. We've solved them using an integrating factor.  

And then what we've done is we've used the superposition principle to solve the same ODE for a right-

hand side, which is the superposition of multiples of the functions that we've had in part A and for part 

B. So I'd like to conclude here, and I'll see you next time. 
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