Part I Problems and Solutions

For each of the following ODE's, draw a direction field by using about five isoclines; the picture should be square, using the intervals between -2 and 2 on both axes. Then sketch in some integral curves, using the information provided by the direction field. Finally, do whatever else is asked.

Problem 1: $y^{\prime}=-\frac{y}{x}$. Solve the equation exactly and compare your integral curves with the correct ones.

Solution: $y^{\prime}=-\frac{y}{x}$. Isoclines: $-\frac{y}{x}=m \rightarrow y=-m x$.
Solutions: $\frac{d y}{y}=-\frac{d x}{x} \rightarrow \ln y=-\ln x+c \rightarrow y=\frac{c}{x}$.

Problem 2: $y^{\prime}=2 x+y$. Find a solution whose graph is also an isocline, and verify this fact analytically (i.e., by calculation, and not from a picture).

Solution: $y^{\prime}=2 x+y$ has isoclines $2 x+y=m \rightarrow y=-2 x+m$. Isocline $y=-2 x+m$ is also a solution if $y^{\prime}=-2$ (from solution) and also $y^{\prime}=2 x+y$ (from DE) $\rightarrow y=-2 x-2$, that is, the isocline with $m=-2$.

Problem 3: $\quad y^{\prime}=\frac{1}{x+y}$. Use the interval -3 to 3 on both axes; draw in the integral curves that pass respectively through $(0,0),(-1,1),(0,-2)$. Will these curves cross the line $y=-x-1$? Explain by using the Intersection Principle.

Solution: Isoclines $x+y=\frac{1}{m} \rightarrow y=-x+\frac{1}{m}$.
$y=-x-1$ is an integral curve (or solution) so other solutions cannot cross it.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

