Part II Problems and Solutions

Problem 1: [Series RLC circuits; amplitude and phase] Open the Mathlet Series RLC Circuit. Here we will focus entirely on the current response, so it will be clearer if the check boxes labelled V_{R}, V_{L}, V_{C}, are left unchecked. But click twice on the I box, to make a green curve appear in the graphing window, representing the current through any point in the circuit as a function of time.
The Mathlet uses the International System of Units, SI, formerly known as the mks (meter-kilogram-second) system. The equation

$$
\dot{L} \ddot{I}+R \dot{I}+(1 / C) I=\dot{V}
$$

is correct when:
the resistance R is measured in ohms, Ω,
the inductance L is measured in H, henries,
the capacitance C is measured in farads, F, the voltage V is measured in volts, also denoted V, the current I is measured in amperes, A.
The slider displays millihenries, $m H\left(1 \mathrm{mH}=10^{-3} \mathrm{H}\right)$ and microfarads, $\mu \mathrm{F}\left(1 \mu \mathrm{~F}=10^{-6} \mathrm{~F}\right)$, and milliseconds, $\mathrm{ms}\left(1 \mathrm{~ms}=10^{-3} \mathrm{sec}\right)$.
The Mathlet studies a sinusoidal input signal $V(t)=V_{0} \sin (\omega t)$. Play around with the various sliders and watch the effect on the (blue) voltage curve and the (green) current curve.
(a) By experimenting, identify a few values of the system parameters R, L, C, V_{0}, ω, for which the current and the voltage are perfectly in phase. For example, if $L=500 \mathrm{mH}$ and $\omega=200$ radians/second, what values of R, C, and V_{0} put I in phase with V ?
(b) Now calculate the relationship between the system parameters which leads to I and V being in phase. Do your experiments align with your calculations?
(c) Set $R=100 \Omega, L=1000 \mathrm{mH}, \mathrm{C}=100 \mu \mathrm{~F}, V_{0}=500 \mathrm{~V}$. Vary ω and watch the action. For what value of ω is the amplitude of $I(t)$ maximal? What is that amplitude (in amps)? What is the phase lag between the input signal, $V_{0} \sin (\omega t)$, and the system response, $I(t)$, for that value of ω ?
(d) Verify the three observations made in (c) computationally. You should be able to do this for general values of R, L, C, V_{0}.

Solution: (a) It seems that C must be close to $50 \mu \mathrm{~F}$. The values of V_{0} and R don't seem to matter.
(b) Here is one of several ways to do this problem. We are looking at

$$
\ddot{L} \ddot{I}+R \dot{I}+(1 / C) I=V_{0} \omega \cos (\omega t)
$$

To undersand its sinusoidal solution, make the complex replacement

$$
L \ddot{z}+R \dot{z}+(1 / C) z=V_{0} \omega e^{i \omega t}
$$

so that $I_{p}=\operatorname{Re}\left(z_{p}\right)$. By the ERF, the exponential solution is $z_{p}=\frac{V_{0} \omega e^{i \omega t}}{p(i \omega)}$. To be in phase with $\sin (\omega t)$, the real part of this must be a positive multiple of $\sin (\omega t)$. This occurs precisely when the real part of $p(i \omega)$ is zero. $\operatorname{Re} p(i \omega)=(1 / C)-L \omega^{2}$, so the relation is $1 / C=L \omega^{2}$.
To check, when $L=500 \mathrm{mH}=.5 \mathrm{H}$ and $\omega=200 \mathrm{rad} / \mathrm{sec}$, the system response is in phase when $C=1 /\left(.5 \times(200)^{2}\right)=50 \times 10^{-6} \mathrm{~F}=50 \mu \mathrm{~F}$.
(c) It seems that the maximal system response amplitude I_{r} occurs when $\omega=100 \mathrm{rad} / \mathrm{sec}$, and that it is about 5 amps . Then the solution is in phase with the input voltage.
(d) In (b) we saw that the solution is the real part of $z_{p}=\frac{V_{0} \omega e^{i \omega t}}{p(i \omega)}$. The amplitude of this sinusoid is $\left|\frac{V_{0} \omega}{p(i \omega)}\right|$, which is maximal when its reciprocal $\left|\frac{\left(1 / C-L \omega^{2}\right)+R i \omega}{V_{0} \omega}\right|=$ $\left|\left(\frac{1}{C \omega}-L \omega\right)+R i\right|$ is minimal. The imaginary part here is constant, so as ω varies the complex number moves along the horizontal straight line with imaginary part R. The point on that line with minimal magnitude is $R i$, which occurs when the real part is zero: $1 / C \omega=L \omega$, or $\omega_{r}=1 / \sqrt{L C}$. The amplitude is then $I_{r}=g\left(\omega_{r}\right) V_{0}=V_{0} / R$. It depends only on V_{0} and R, not on L or C ! Finally, this is the same as the condition for phase lag zero, so the phase lag at $\omega=\omega_{r}$ is zero.
With the given values $R=100 \Omega, L=1 \mathrm{H}, \mathrm{C}=10^{-4} \mathrm{~F}, \omega_{r}=100 \mathrm{rad} / \mathrm{sec}$, as observed. When $V_{0}=500 \mathrm{~V}$ and $R=100 \Omega, I_{r}=5 \mathrm{Amps}$, as observed.

Problem 2: AM Radio Tuning and LRC Circuits

An LRC circuit can be modeled using the same DE as in the previous problem. Specifically,

$$
L I^{\prime \prime}+R I^{\prime}+\frac{1}{C} I=E^{\prime}
$$

Where $I=$ current in amps, $L=$ inductance in henries, $R=$ resistance in ohms, $C=$ capacitance in farads and $E=$ input EMF in volts. Often the important output is the voltage drop V_{R} across the resistor. Ohm's law tells us $V_{R}=R I$. This gives us the $D E$

$$
L V_{R}^{\prime \prime}+R V_{R}^{\prime}+\frac{1}{C} V_{R}=R E^{\prime}
$$

(a) Assume $E=E_{0} \cos (\omega t)$ and solve the $D E$ for V_{R} in phase-amplitude form.
(b) Open the 'LRC Filter Applet'. This applet models an LRC circuit with input voltage a superposition of sine waves. Play with the applet -be sure to learn how to vary ω_{1} and ω_{2} by dragging the dots on the amplitude plot.
Describe what happens to the amplitude response plot as L, R and C are varied.
(c) An LRC circuit can be used as part of a simple AM radio tuner. In an AM radio broadcast the signal is given by $a \cos (\omega t)$ where ω is the 'carrier' frequency (between 530 and 1600 khz). To really carry information the amplitude a must vary -this is the amplitude modulation- but, we will ignore this right here.
The range of values for this simple variable capacitor AM radio tuner is $L \approx .5$ microhenries, R is the resistance in the wire (very small) and C is between .02 and .2 microfarads. To keep things simple we will use different ranges however the idea is the same.
In the LRC Filter applet set $\omega_{1}=1$ and $w_{2}=4$ (set them as close as you can on your system). Set the input amplitudes a and b to 1 . Find settings for L, R and C so that the output filters out the ω_{2} part of the signal i.e. the output looks (a lot) like a sine wave of frequency ω_{1}. Give your values for L, R and C.
How does the quality of the filter change as you vary R ?
(d) An antenna on a radio picks up electomagnetic signals from all frequencies. It responds by outputing a signal consisting of voltages at each of these frequencies. This signal is used as input to a tuner circuit.
Using the applet, set $L=1, R=.5$. Now, vary C and then explain why a variable capacitor circuit could be used as an AM radio tuner.
(e) Show that the natural frequency (undamped, unforced resonant frequency) of the system is $\omega_{0}=1 / \sqrt{L C}$. Show that even with damping, i.e., $R>0, \omega_{0}$ is always the practical resonant frequency. (Hint: this can be done without calculus by writing $A(\omega)$ in the proper way.)

Solution: (a) Here is the answer with very little comment. (Note we complexify the input before taking the derivative.)
For simplicity write V for V_{R}.
Complex DE: $L \tilde{V}^{\prime \prime}+R \tilde{V}^{\prime}+\frac{1}{C} \tilde{V}=\left(R E_{0} e^{i \omega t}\right)^{\prime}=i \omega R E_{0} e^{i \omega t}, V=\operatorname{Re}(\tilde{V})$.
Char. polynomial: $P(i w)=\frac{1}{C}-L \omega^{2}+R i \omega$.

Note: $|P(i \omega)|=\frac{\sqrt{\left(1-L C \omega^{2}\right)^{2}+(R C \omega)^{2}}}{C}$,
$\frac{i}{P(i \omega)}=\frac{C}{\left(1-L C \omega^{2}\right)^{2}+(R C \omega)^{2}}\left(R C \omega+i\left(1-L C \omega^{2}\right)\right)$.
Exp. Input Thm: $\quad \tilde{V}_{p}=\frac{i R \omega E_{0}}{P(i \omega)} e^{i \omega t}, \quad V_{p}=\operatorname{Re}\left(\tilde{V}_{p}\right)$.
Amplitude-Phase Form: $\quad V_{p}=A \cos (\omega t-\phi)$, where
$A=\left|\frac{i R \omega E_{0}}{P(i \omega)}\right|=\frac{R C \omega E_{0}}{\sqrt{\left(1-L C \omega^{2}\right)^{2}+(R C \omega)^{2}}} \Rightarrow A=\frac{E_{0}}{\sqrt{\left(\frac{1-L C \omega^{2}}{R C}\right)^{2}+1}}$,
$\phi=-\operatorname{Arg}\left(\frac{i R \omega E_{0}}{P(i \omega)}\right)=-\operatorname{Arg}\left(\frac{i}{P(i \omega)}\right)=-\tan ^{-1}\left(\frac{1-L C \omega^{2}}{R C \omega}\right)$,
where, since the complex number $R C \omega+i\left(1-L C \omega^{2}\right)$ is in the 1st or 4th quadrants, ϕ is between $-\pi / 2$ and $\pi / 2$.
(b) Except for the fact that C corresponds to $1 / k$ we get the same answer as the previous problems.
As L increases the amplitude peak moves to the left and the graph gets a little spikier.
As R decreases the peak doesn't move and the amplitude graph gets spikier.
As C increases the peak moves to the left.
(c) One possibility is $L=3, C=.33, R=.4$. In any case, $L C=1$. The smaller R is the less of the ω_{2} frequency signal gets through. In general, the smaller the value of R the smaller the pass-band of the filter.
(d) As C varies the spike in the amplitude graph moves. Thus changing the frequency that can pass through the filter.
(e) Without damping or forcing the DE is $L I^{\prime \prime}+\frac{1}{C} I=0 \Rightarrow I^{\prime \prime}+\frac{1}{L C} I=0 \Rightarrow$ resonant frequency is $\omega_{0}=1 / \sqrt{L C}$.
The boxed formula for A in part (a) shows that A is maximized when the term under the square root is minimized. This happens when the term in parentheses is 0 , i.e. when $L C \omega^{2}-1=0 \Leftrightarrow \omega=1 / \sqrt{L C}=\omega_{0}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

