
18.03SC Differential Equations, Fall 2011 
Transcript – Frequency Response 

PROFESSOR: Hi everyone. So today, I'd like to talk about frequency response. And specifically, we're 

going to take a look at a couple different differential equations. And we're asked to graph the amplitude 

response for each equation. And you'll note that these equations a, b and c have varying amounts of 

damping. So for part a we're asked to plot the amplitude response for x dot dot plus 4x equals f knot 

cosine omega t.  

For part b it's the same equation, however we have an x dot term added. For part c, again we've 

increase the damping. So now we have 6x dot. And then lastly for part d, we'd like to discuss the 

resonance for each system. So I'll let you work out this problem, and I'll be back in a moment.  

Hi everyone. Welcome back. So for part a, we're asked to graph the amplitude response to the 

differential equation x dot dot plus 4x equals f not cosine omega t. And from a previous recitation, we 

already wrote down the particular response to this differential equation. So I'm just going to write down 

the particular response, which has the form f not 4 minus omega squared cosine omega t.  

Now the amplitude response is defined as a ratio, and specifically it's the ratio of the output amplitude 

of a differential equation to the input amplitude of a differential equation. So in the case at hand, we 

have the output is a sinusoidal function whose amplitude is f not divided by 4 minus omega squared. So 

it's the output divided by the input. These are both amplitudes. And in our case, we have f not divided 

by 4 minus omega squared. This is the output amplitude.  

And the input amplitude is just f not. So we see when we compute this ratio the f0's divide out. And at 

the end of the day, we're left with 4 minus omega squared.  

So I'm going to draw the amplitude response now. So we have omega. And we see that when omega is 

equal to 2, there's an asymptote. When omega is equal to 0, we have 1/4. And specifically, we have this 

tent-like function. So this is the amplitude response.  

So notice how when we drive the system with frequency two, the amplitude response goes to infinity. 

As a result, we call this frequency the resonant frequency. So this concludes part a.  

For part b, we have a differential equation with damping now. And to compute the particular solution, 

we follow the standard procedure of first complexifying the right-hand side and then using the 

exponential response formula.  

So I'm just going to write down the particular solution. If we follow these steps, we find that it's the real 

part of the right-hand side complexified, which is f not e to the i omega t divided by the characteristic 

polynomial evaluated at i omega. And in this case, the characteristic polynomial p of s is s squared plus s 

plus 4. p of i omega is then 4 minus omega squared plus i omega. And when we put the pieces together, 

we end up with a particular solution, which looks like the real part of 1 over 4 minus omega squared plus 

i omega f not upstairs e to the i omega t.  



So we're asked to compute the amplitude response graph. And if we take a look at this, we see that the 

denominator here is really just a complex number. So we can convert it into the form of r,e to the i phi.  

Now, the amplitude response is defined as the ratio of the output divided by the input. And so the 

output amplitude is going to be the magnitude of this complex number. So as a result, the amplitude 

response is just the magnitude of 1 over the characteristic polynomial evaluated at i omega. This is also 

sometimes referred to as the complex gain.  

Moreover, this term right here contains two pieces of information. Not only does it contain the 

amplitude response, but it also contains the phase information. When we take the absolute value, we're 

throwing out the phase information, and we're just remembering the amplitude response.  

So what is this amplitude response look like for this case? Well, we have 1 over and it's the magnitude of 

this complex number, which is 4 minus omega squared plus i omega. So I just take the real part, square 

it, add it to the imaginary part squared, and square root the whole quantity.  

Now there's a question of how to graph this. And we see that first off, the square root's an increasing 

function. And we see that we're 1 over an increasing function. So there's a trick, which is to just look first 

at sketching this piece which is under the radical sign. And if you look at trying to maximize this function-

- so finding the critical points-- we'd see that in this case, we have one maximum, to 4 minus omega 

squared plus omega squared. And this is at 1 omega equals the square root of 7/2. Sorry. This is a 

minimum.  

So when I go to sketch this now, we have omega, we have the amplitude response. Now, I'm going to 

draw in 2 from our previous diagram. Now, the square root of 7/2 is just below 2, so square root of 7/2. 

So we end up with a maximum at 7/2, and then a decay to infinity. And again, this is going to be 1/4 

when omega is 0. So this is the peak amplitude response.  

So note that in this case, by adding damping, what we've done is we no longer have an asymptote at 

omega equals 2. But we now have a finite amplitude, which occurs at omega equals the square root of 

7/2. So I'm just going to clean up the board, and I'll be back with part c in a second.  

For part a, we have an amplitude response diagram, which looks like a tent function. And at 2, omega 

equals 2, we have a resonance. So the amplitude response diverges.  

Just like to point out, I made a small error before. I forgot to include absolute values on the denominator 

here. The amplitude response function, it's always a positive quantity. We always throw out any phase 

information and leave that for the phase in the description of the response of the linear system. So the 

amplitude response is always positive.  

For part b, we added dampening to the system. And we see that there's actually a peak point which is at 

the square root of 7/2. And the amplitude response is bounded at this point, but it achieves a maximum. 

And then again it decays to infinity.  



So I'd like now to take a look at part c. And in part c, we have the differential equation x dot dot plus 6x 

dot plus 4x equals f not cosine omega t. And again, the amplitude response is going to equal 1 over the 

absolute value of p of i omega. And in this case, p of i omega is going to be 1 over-- Well, we still have 

the 4 minus omega squared term. Instead of x dot, we now have 6x dot, which gives us 6i omega.  

And then again, we want to take the absolute value of this complex number. And when we take the 

absolute value, we just get the sum of the real parts squared plus the sum of the imaginary parts 

squared, which in this case is going to be 36 omega squared, the whole quantity squared rooted, and 

then we have 1 over this value.  

So now if we'd like to plot this function, we can still do the same trick and try to maximize or find the 

critical points of the denominator under the radical. And if we did this, in this case we would find that 

the only critical point is when omega is equal to 0. Secondly, if we look at omega going to infinity, we 

see that the denominator goes to infinity. So this whole quantity must go to 0.  

So if I were to go back here to the amplitude response for part c, again, when omega is equal to 0 it's 

going to start off at 1/4. I've just argued that it goes to 0 as omega goes to infinity. And since there are 

no critical points, we must smoothly paste the function between the two. And in fact, it's always 

decreasing. So the amplitude response, in this case, is just a decreasing function.  

So this concludes part c. And now I'll take a look at part d. Discuss the resonance for each system. So in 

part a, we had no damping. And we saw that there was a resonance at omega equals 2. And the 

resonance manifested itself in the amplitude response graph with a divergent asymptote at omega is 

equal to 2. So as you drive the system close to omega equals 2, the amplitude of the system starts to 

diverge.  

In case two we introduced damping into the system. So we still have a very large amplitude response at 

omega equals the square root of 7/2, however it's no longer infinite. And then lastly, when we increased 

damping even further so we had the 6x dot term, the presence of a peak disappeared. And in fact, the 

amplitude response just monotonically decayed from 1/2 to infinity. So just constantly decreased to 0.  

So I'd just like to conclude there, and I'll see you next time. 
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