Proof of the Generalized Exponential Response Formula

Using the exponential shift rule, we can now give a proof of the general case of the ERF which we stated without proof in the session on Exponential Response. This is a slightly complicated proof and you can safely skip it if you are not interested.
Generalized Exponential Response Formula. Let $p(D)$ be a polynomial operator with constant coefficients and $p^{(s)}$ its s-th derivative. Then

$$
\begin{equation*}
p(D) x=e^{a t}, \quad \text { where } a \text { is real or complex } \tag{1}
\end{equation*}
$$

has the particular solution

$$
x_{p}=\left\{\begin{array}{lll}
\text { i) } & \frac{e^{a t}}{p(a)} & \text { if } p(a) \neq 0 \\
\text { ii) } & \frac{t e^{a t}}{p^{\prime}(a)} & \text { if } p(a)=0 \text { and } p^{\prime}(a) \neq 0 \\
\text { iii) } & \frac{t^{2} e^{a t}}{p^{\prime \prime}(a)} & \text { if } p(a)=p^{\prime}(a)=0 \text { and } p^{\prime \prime}(a) \neq 0 \\
\cdots & \\
\text { iv) } & \frac{t^{s} e^{a t}}{p^{(s)}(a)} & \text { if } a \text { is an s-fold zero }
\end{array}\right.
$$

Proof. That (i) is a particular solution to (1) follows immediately by using the linearity and substitution rules given earlier.

$$
p(D) x_{p}=p(D) \frac{e^{a t}}{p(a)}=\frac{1}{p(a)} p(D) e^{a t}=\frac{p(a) e^{a t}}{p(a)}=e^{a t} .
$$

Since cases (ii) and (iii) are special cases of (iv) we skip right to that. For case (iv), we begin by noting that to say the polynomial $p(D)$ has the number a as an s-fold zero is the same as saying $p(D)$ has a factorization

$$
\begin{equation*}
p(D)=q(D)(D-a)^{s}, \quad q(a) \neq 0 . \tag{2}
\end{equation*}
$$

We will first prove that (2) implies

$$
\begin{equation*}
p^{(s)}(a)=q(a) s!. \tag{3}
\end{equation*}
$$

To prove this, let k be the degree of $q(D)$ and write it in powers of $(D-a)$:

$$
\begin{array}{ll}
q(D) & =q(a)+c_{1}(D-a)+\ldots+c_{k}(D-a)^{k} ; \quad \text { then } \\
p(D) & =q(a)(D-a)^{s}+c_{1}(D-a)^{s+1}+\ldots+c_{k}(D-a)^{s+k} ; \tag{4}\\
p^{(s)}(D) & =q(a) s!+\text { positive powers of } D-a .
\end{array}
$$

Substituting a for D on both sides proves (3).
Using (3), we can now prove (iv) easily using the exponential-shift rule. We have

$$
\begin{array}{rlrl}
p(D) \frac{e^{a t} x^{s}}{p^{(s)}(a)} & =\frac{e^{a t}}{p^{(s)}(a)} p(D+a) x^{s}, & & \text { by linearity and ERF case (i); } \\
& =\frac{e^{a t}}{p^{(s)}(a)} q(D+a) D^{s} x^{s}, \quad \text { by (2); } \\
& =\frac{e^{a t}}{q(a) s!} q(D+a) s!, \quad \text { by (3); } \\
& =\frac{e^{a t}}{q(a) s!} q(a) s!=e^{a t},
\end{array}
$$

where the last line follows from (4), since s ! is a constant:

$$
q(D+a) s!=\left(q(a)+c_{1} D+\ldots+c_{k} D^{k}\right) s!=q(a) s!.
$$

Note: By linearity we could have stated the formula with a factor of B in the input and a corresponding factor of B to the output. That is, the DE

$$
p(D) x=B e^{a t}
$$

has a particular solution

$$
x_{p}=\frac{B e^{a t}}{p(a)}, \quad \text { if } p(a) \neq 0 \text { etc. }
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

