Domain of F(s)

1. Complex *s* and region of convergence

We will allow *s* to be complex, using as needed the properties of the complex exponential we learned in unit 1.

Example 1. In the previous note we saw that $\mathcal{L}(1) = 1/s$, valid for all s > 0. Let's recompute $\mathcal{L}(1)(s)$ for complex *s*. Let $s = \alpha + i\beta$.

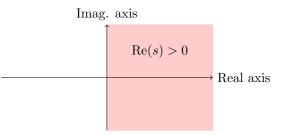
$$\mathcal{L}(1)(s) = \int_0^\infty e^{-st} dt$$

= $\lim_{T \to \infty} \frac{e^{-st}}{-s} \Big]_0^T$
= $\lim_{T \to \infty} \frac{e^{-\alpha t} (\cos(\beta t) + i \sin(\beta t))}{-s} \Big]_0^T$

This converges if α > and diverges if α < 0. Since α = Re(s) we have

$$\mathcal{L}(1) = 1/s, \quad \text{for } \operatorname{Re}(s) > 0.$$

The region Re(s) > 0 is called the **region of convergence** of the transform. It is a right half-plane.



Region of convergence: right half-plane $\operatorname{Re}(s) > 0$.

Frequency: The Laplace transform variable *s* can be thought of as complex frequency. It will take us a while to understand this, but we can begin here. Euler's formula says $e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$ and we call ω the angular frequency. By analogy for any complex number exponent we call *s* the **complex frequency** in e^{st} . If $s = a + i\omega$ then *s* is the complex frequency and its imaginary part ω is an actual frequency of a sinusoidal oscillation.

2. Piecewise continuous functions and functions of exponential order

If the integral fails to converge for any *s* then the function does not have a Laplace transform.

Example. It is easy to see that $f(t) = e^{t^2}$ has no Laplace transform.

The problem is the e^{t^2} grows too fast as *t* gets large. Fortunately, all of the functions we are interested in do have Laplace transforms valid for Re(s) > a for some value *a*.

Functions of Exponential Order

The class of functions that do have Laplace transforms are those of *exponential order*. Fortunately for us, all the functions we use in 18.03 are of this type.

A function is said to be of **exponential order** if there are numbers *a* and *M* such that $|f(t)| < Me^{at}$. In this case, we say that *f* has exponential order *a*.

Examples. 1, $cos(\omega t)$, $sin(\omega t)$, t^n all have exponential order 0. e^{at} has exponential order *a*.

A function f(t) is **piecewise continuous** if it is continuous everywhere except at a finite number of points in any finite interval and if at these points it has a jump discontinuity (i.e. a jump of finite height).

Example. The square wave is piecewise continuous.

Theorem: If f(t) is piecewise continuous and of exponential order *a* then the Laplace transform $\mathcal{L}f(s)$ converges for all *s* with $\operatorname{Re}(s) > a$.

Proof: Suppose $\operatorname{Re}(s) > a$ and $|f(t)| < Me^{at}$. Then we can write $s = (a + \alpha) + ib$, where $\alpha > 0$. Then, since $|e^{-ibt}| = 1$,

$$|f(t)e^{-st}| = |f(t)e^{-(a+\alpha)t}e^{-ibt}| = |f(t)e^{-(a+\alpha)t}| < Me^{-\alpha t},$$

Since $\int_0^{\infty} Me^{-\alpha t} dt$ converges for $\alpha > 0$, the Laplace transform integral also converges.

Domain of F(s): For f(t) we have F(s) = 1/s with region of convergence $\operatorname{Re}(s) > 0$. But, the function 1/s is well defined for all $s \neq 0$. The process of extending the domain of F(s) from the region of convergence is called *analytic continuation*. In this class analytic continuation will always consist of extending F(s) to the complex plane minus the zeros of the denominator.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.