18.03SC Practice Problems 22

Fourier Series

Suppose that $f(t)$ a periodic function for which 2π is a period (so that $f(t+2 \pi)=f(t)$). (For convergence properties, we also assume that $f(t)$ is piecewise continuous and that $f(a)=\frac{1}{2}(f(a-)+f(a+))$ at points of discontinuity.)
Then there is exactly one sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots$, for which

$$
\begin{aligned}
f(t)= & \frac{a_{0}}{2}+a_{1} \cos (t)+a_{2} \cos (2 t)+\cdots \\
& +b_{1} \sin (t)+b_{2} \sin (2 t)+\cdots
\end{aligned}
$$

This expansion is called the Fourier series for $f(t)$, and the numbers from this sequence are defined to be the Fourier coefficients of $f(t)$.
The Fourier coefficients of such a function $f(t)$ can be calculated directly by using integral formulas

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) d t, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) d t
$$

but often they can be found more easily, by starting from some known examples. One example that we will use frequently is the standard squarewave, $s q(t)$. The standard squarewave is defined to be the odd function $\mathrm{sq}(t)$ of period $2 \pi \operatorname{such}$ that $\mathrm{sq}(t)=1$ for $0<t<\pi$. The Fourier series for $s q(t)$ can be computed from the integral formulas to be

$$
\mathrm{sq}(t)=\frac{4}{\pi}\left(\sin (t)+\frac{\sin (3 t)}{3}+\frac{\sin (5 t)}{5}+\cdots\right)=\frac{4}{\pi} \sum_{k \mathrm{odd}} \frac{\sin (k t)}{k} .
$$

1. Graph the function $f(t)$ which is even, periodic of period 2π, and such that $f(t)=2$ for $0<t<\frac{\pi}{2}$ and $f(t)=0$ for $\frac{\pi}{2}<t<\pi$. Find its Fourier series in two ways:
(a) Use the integral expressions for the Fourier coefficients. (Is the function even or odd? What can you say right off about the coefficients?)
(b) Express $f(t)$ in terms of $\mathrm{sq}(t)$, substitute the Fourier series for $\mathrm{sq}(t)$ and use some trig identities.
(c) Now find the Fourier series for $f(t)-1$.
2. What is the Fourier series for $\sin ^{2} t$?
3. Graph the odd function $g(x)$ which is periodic of period π and such that $g(x)=$ 1 for $0<x<\frac{\pi}{2}$. 2π is also a period of $g(x)$, so it has a Fourier series of period 2π as above. Find it by expressing $g(x)$ in terms of the standard squarewave.
4. Graph the function $h(t)$ which is odd and periodic of period 2π and such that $h(t)=t$ for $0<t<\frac{\pi}{2}$ and $h(t)=\pi-t$ for $\frac{\pi}{2}<t<\pi$. Find its Fourier series, starting with your solution to 1(c).
5. Explain why any function $F(x)$ is a sum of an even function and an odd function in just one way. What is the even part of e^{x} ? What is the odd part?

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

