Compute a Fourier Series

Exercise. We warm up with a reminder of how one computes the Fourier series of a given periodic function using the integral Fourier coefficient formulas.

Compute the Fourier series for the period 2π continuous sawtooth function $f(t)=|t|$ for $-\pi \leq t \leq \pi$.
Answer.

Figure 1. Graph of the period 2π continuous sawtooth function.
The period is 2π, so the half-period $L=\pi$. Since $f(t)=|t|$ for $-\pi \leq$ $t \leq \pi$, it is an even function we know the Fourier sine coefficents b_{n} must be zero.

Computing the cosine coefficients we get: For $n \neq 0$:

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}|t| \cos (n t) d t=\frac{2}{\pi} \int_{0}^{\pi} t \cos (n t) d t \\
& =\frac{2}{\pi}\left(\frac{t \sin (n t)}{n}+\left.\frac{\cos (n t)}{n^{2}}\right|_{0} ^{\pi}=\frac{2}{n^{2} \pi}\left((-1)^{n}-1\right)= \begin{cases}-\frac{4}{n^{2} \pi} & \text { for } n \text { odd } \\
0 & \text { for even }\end{cases} \right.
\end{aligned}
$$

For $n=0$:
$a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi}|t| d t=\frac{2}{\pi} \int_{0}^{\pi} t d t=\pi$.
Thus, $f(t)$ has Fourier series

$$
\begin{aligned}
f(t) & =\frac{\pi}{2}-\frac{4}{\pi}\left(\cos t+\frac{\cos (3 t)}{3^{2}}+\frac{\cos (5 t)}{5^{2}}+\cdots\right) \\
& =\frac{\pi}{2}-\frac{4}{\pi} \sum_{n \text { odd }} \frac{\cos (n t)}{n^{2}}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

