Even and Odd Functions

If a periodic function $f(t)$ is an even function we have already used the fact that its Fourier series will involve only cosines. Likewise the Fourier series of an odd function will contain only sines. Here we will give short proofs of these statements.

Even and odd functions.

Definition. A function $f(t)$ is called even if $f(-t)=f(t)$ for all t.
The graph of an even function is symmetric about the y-axis. Here are some examples of even functions:

1. $t^{2}, t^{4}, t^{6}, \ldots$, any even power of t.
2. $\cos (a t)$ (recall the power series for $\cos (a t)$ has only even powers of t).
3. A constant function is even.

We will need the following fact about the integral of an even function over a 'balanced' interval $[-L, L]$.

$$
\text { If } f(t) \text { is even then } \quad \int_{-L}^{L} f(t) d t=2 \int_{0}^{L} f(t) d t
$$

This fact becomes clear if we think of the integral as an area (see fig. 1).

Fig. 1: Even functions:
(total area $=$ twice area of right half)
Definition. A function $f(t)$ is called odd if $f(-t)=-f(t)$ for all t.
The graph of an odd function is symmetric about the the origin. Here are some examples of odd functions:

1. t, t^{3}, t^{5}, \ldots, any odd power of t.
2. $\sin (a t)$ (recall the power series for $\sin (a t)$ has only odd powers of t).

We will need the following fact about the integral of an odd function over a 'balanced' interval $[-L, L]$.

$$
\text { If } f(t) \text { is odd then } \int_{-L}^{L} f(t) d t=0
$$

This fact becomes clear if we think of the integral as an area (see Fig. 2).

Multiplying Even and Odd Functions

When multiplying even and odd functions it is helpful to think in terms of multiply even and odd powers of t. This gives the following rules.

1. even \times even $=$ even
2. odd \times odd $=$ even
3. odd \times even $=$ odd

All this leads to the even and odd Fourier coefficient rules:
Assume $f(t)$ is periodic then:

1. If $f(t)$ is even then we have $b_{n}=0$, and $a_{n}=\frac{2}{L} \int_{0}^{L} f(t) \cos \left(n \frac{\pi}{L} t\right) d t$.
2. If $f(t)$ is odd then we have $a_{n}=0$, and $b_{n}=\frac{2}{L} \int_{0}^{L} f(t) \sin \left(n \frac{\pi}{L} t\right) d t$.

Reason: Assume $f(t)$ is even. The rule for multiplying even functions tells us that $f(t) \cos$ at is even and the rule for integrating an even function over a symmetric interval tell us that

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(n \frac{\pi}{L} t\right) d t=\frac{2}{L} \int_{0}^{L} f(t) \cos \left(n \frac{\pi}{L} t\right) d t .
$$

Likewise, the rule even \times odd $=$ odd tell us that $f(t) \sin a t$ is odd, and so the integral for b_{n} is 0 .
If $f(t)$ is odd everything works much the same. The rule for multiplying odd functions tells us that $f(t) \sin$ at is even and therefore

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \sin \left(n \frac{\pi}{L} t\right) d t=\frac{2}{L} \int_{0}^{L} f(t) \sin \left(n \frac{\pi}{L} t\right) d t .
$$

Likewise the rule odd \times even $=$ odd tells us that $f(t) \cos (a t)$ is odd, and so the integral for a_{n} is 0 .

Examples: In previous sessions we saw the odd square wave had only sine coefficients and the even triangle wave had only cosine coefficients.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

