Scaling and Shifting

There is a very useful class of shortcuts which allows us to use the known Fourier series of a function $f(t)$ to get the series for a function related to $f(t)$ by shifts and scale changes. We illustrate this technique with a collection of examples of related functions.

We let $\mathrm{sq}(t)$ be the standard odd, period 2π square wave.

$$
\begin{align*}
& \mathrm{sq}(t)= \begin{cases}-1 & \text { for }-\pi \leq t<0 \\
1 & \text { for } 0 \leq t<\pi\end{cases} \tag{1}\\
& \\
& \hline
\end{align*}
$$

Figure 0: The graph of $\mathrm{sq}(t)$, the odd, period 2π square wave.

We already know the Fourier series for $\mathrm{sq}(t)$. It is

$$
\begin{equation*}
\mathrm{sq}(t)=\frac{4}{\pi}\left(\sin (t)+\frac{1}{3} \sin (3 t)+\frac{1}{5} \sin (5 t)+\cdots\right)=\frac{4}{\pi} \sum_{n \text { odd }} \frac{\sin (n t)}{n} \tag{2}
\end{equation*}
$$

1. Shifting and Scaling in the Vertical Direction

Example 1. (Shifting) Find the Fourier series of the function $f_{1}(t)$ whose graph is shown.

Figure 1: $\quad f_{1}(t)=\mathrm{sq}(t)$ shifted up by 1 unit.
Solution. The graph in Figure 1 is simply the graph in Figure 0 shifted upwards one unit. That is, $f_{1}(t)=1+\mathrm{sq}(t)$. Therefore

$$
f_{1}(t)=1+\frac{4}{\pi} \sum_{n \text { odd }} \frac{\sin (n t)}{n} .
$$

Example 2. (Scaling) Let $f_{2}(t)=2 \mathrm{sq}(t)$. Sketch its graph and find its Fourier series.

Solution.

Figure 2: Graph of $f_{2}(t)=2 \mathrm{sq}(t)$.
The Fourier series of $f_{2}(t)$ comes from that of $\mathrm{sq}(t)$ by multiplying by 2 .

$$
f_{2}(t)=\frac{8}{\pi} \sum_{n \text { odd }} \frac{\sin (n t)}{n} .
$$

Example 3. We can combine shifting and scaling along the vertical axis. Let $f_{3}(t)$ be the function shown in Figure 3. Write it in terms of $\mathrm{sq}(t)$ and find its Fourier series.

Figure 3: $\quad f_{3}(t)=\mathrm{sq}(t)$ shifted by 1 and then scaled by $1 / 2$.
Solution. $f_{3}(t)=\frac{1}{2}(1+\mathrm{sq}(t))=\frac{1}{2}+\frac{2}{\pi} \sum_{n \text { odd }} \frac{\sin n t}{n}$.

2. Scaling and Shifting in t

Example 4. (Scaling in time) Find the Fourier series of the function $f_{4}(t)$ whose graph is shown.

Figure 4: $\mathrm{sq}(t)$ scaled in time.
InFigure 4 the point marked 1 on the t-axis corresponds with the point marked π in Figure 0. This shows that $f_{4}(t)=\mathrm{sq}(\pi t)$ and therefore we replace t by πt in the Fourier series of $\mathrm{sq}(t)$.

$$
f_{4}(t)=\frac{4}{\pi} \sum_{n \text { odd }} \frac{\sin (n \pi t)}{n} .
$$

Example 5. (Shifting in time) Let $f_{5}(t)=\mathrm{sq}(t+\pi / 2)$. Graph this function and find its Fourier series.

Solution. We have $f_{5}(t)$ is $\operatorname{sq}(t)$ shifted to the left by $\pi / 2$. Therefore
$f_{5}(t)=\frac{4}{\pi}\left(\sin (t+\pi / 2)+\frac{\sin (3 t+3 \pi / 2)}{3}+\ldots\right)=\frac{4}{\pi}\left(\cos t-\frac{\cos 3 t}{3}+\ldots\right)$
(To simplify the series we used the trig identities $\sin (\theta+\pi / 2)=\cos (\theta)$ and $\sin (\theta+3 \pi / 2)=-\cos (\theta)$ etc.)

Figure 5: sq (t) shifted in time.
Notice that $f_{5}(t)$ is even, and so must have only cosine terms in its series, which is in fact confirmed by the simplified form above.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

