Convergence of Fourier Series

The period $2 L$ function $f(t)$ is called piecewise smooth if there are a only finite number of points $0 \leq t_{1}<t_{2}<\ldots<t_{n} \leq 2 L$ where $f(t)$ is not differentiable, and if at each of these points the left and right-hand limits $\lim _{t \rightarrow t_{i}^{+}} f^{\prime}(t)$ and $\lim _{t \rightarrow t_{i}^{-}} f^{\prime}(t)$ exist (although they might not be equal).

Recall that when we first introduced Fourier series we wrote

$$
\begin{aligned}
f(t) \sim & \frac{a_{0}}{2}+a_{1} \cos (t)+a_{2} \cos (2 t)+a_{3} \cos (3 t)+\ldots \\
& +b_{1} \sin (t)+b_{2} \sin (2 t)+b_{3} \sin (3 t)+\ldots \\
= & \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+b_{n} \sin (n t)
\end{aligned}
$$

where we used ' \sim ' instead of an equal sign. The following theorem shows that our subsequent use of an equal sign, while not technically correct, is close enough to be warranted.

Theorem: If $f(t)$ is piecewise smooth and periodic then the Fourier series for f

1. converges to $f(t)$ at values of t where f is continuous
2. converges to the average of $f\left(t^{-}\right)$and $f\left(t^{+}\right)$where it has a jump discontinuity.
Example. Square wave. No matter what the endpoint behavior of $f(t)$ the Fourier series converges to:

Fourier series for $f(t)$
Example. Continuous sawtooth: Fourier series converges to $f(t)$.

Example.

Original $f(t)$

Fourier series

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

