
Application to Infinite Series 

There is a famous formula found by Euler: 
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We’ll show how you can use a Fourier series to get this result. 
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Consider the period 2π function given by f (t) = t π  on [0, 2π]. 
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Figure 1: Graph of f (t). 

First, we compute the Fourier series of f (t). Since f is even, the sine 
terms are all 0. For the cosine terms it is slightly easier to integrate over 
a full period from 0 to 2π rather than doubling the integral over the half-
period. We give the results, but leave the details of the integration by parts 
to the reader. 
For n = 0 we have 

1 
� 2π 2π2 

a0 = 
π 0 

t(π − t/2) dt = 
3 

and for n = 0 we have 
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Thus the Fourier series is f (t) =
 − 2

n2 .
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Since the function f (t) is continuous, the series converges to f (t) for all t. 
Plugging in t = 0, we then get 

−

∞

∑ 
n=1 

2

n2 . 

π2 

f (0) = 0
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A little bit of algebra then gives Euler’s result (1).
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