Application to Infinite Series

There is a famous formula found by Euler:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \tag{1}
\end{equation*}
$$

We'll show how you can use a Fourier series to get this result.
Consider the period 2π function given by $f(t)=t\left(\pi-\frac{t}{2}\right)$ on $[0,2 \pi]$.

Figure 1: Graph of $f(t)$.
First, we compute the Fourier series of $f(t)$. Since f is even, the sine terms are all 0 . For the cosine terms it is slightly easier to integrate over a full period from 0 to 2π rather than doubling the integral over the halfperiod. We give the results, but leave the details of the integration by parts to the reader.
For $n=0$ we have

$$
a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} t(\pi-t / 2) d t=\frac{2 \pi^{2}}{3}
$$

and for $n \neq 0$ we have

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{0}^{2 \pi} t(\pi-t / 2) \cos (n t) d t \\
& =\frac{1}{\pi}\left[\frac{\pi t \sin (n t)}{n}+\frac{\pi \cos (n t)}{n^{2}}-\frac{t^{2} \sin (n t)}{2 n}-\frac{t \cos (n t)}{n^{2}}+\left.\frac{\sin (n t)}{n^{3}}\right|_{0} ^{2 \pi}=-\frac{2}{n^{2}}\right.
\end{aligned}
$$

Thus the Fourier series is $f(t)=\frac{\pi^{2}}{3}-2 \sum_{n=1}^{\infty} \frac{\cos (n t)}{n^{2}}$.
Since the function $f(t)$ is continuous, the series converges to $f(t)$ for all t.
Plugging in $t=0$, we then get

$$
f(0)=0=\frac{\pi^{2}}{3}-\sum_{n=1}^{\infty} \frac{2}{n^{2}}
$$

A little bit of algebra then gives Euler's result (1).

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

