Part I Problems and Solutions

Problem 1: For each of the following functions f(t), find the pole diagram of F(s).

- a) f(t) = 1
- b) $f(t) = e^{-t} + 3e^{-3t}$
- c) $f(t) = \cos(2t) + e^{-t}\sin(t)$

Solution:

b) $f(t) = e^{-t} + 3e^{-3t} \rightarrow \mathcal{L}(f) = \frac{1}{s+1} + \frac{3}{s+3}$. This has poles at s = -1 and s = -3. $\begin{array}{c} +i \\ \hline \\ -3 \\ -3 \\ \hline \\ -1 \\ \hline \\ -i \\ \end{array}$ c) $f(t) = \cos(2t) + e^{-t} \sin t \to \mathcal{L}(f) = \frac{s}{s^2 + 4} + \frac{1}{(s+1)^2 + 1}$. This has poles when $s^2 + 4 = 0$, so at $s = \pm 2i$; and when $(s+1)^2 + 1 = 0$, so also at $s = -1 \pm i$.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.