Part I Problems and Solutions

Problem 1: For each of the following functions $f(t)$, find the pole diagram of $F(s)$.
a) $f(t)=1$
b) $f(t)=e^{-t}+3 e^{-3 t}$
c) $f(t)=\cos (2 t)+e^{-t} \sin (t)$

Solution:
a) $f(t)=1 \rightarrow \mathcal{L}(f)=\frac{1}{s}$ which has one pole at $s=0$.

b) $f(t)=e^{-t}+3 e^{-3 t} \rightarrow \mathcal{L}(f)=\frac{1}{s+1}+\frac{3}{s+3}$. This has poles at $s=-1$ and $s=-3$.

c) $f(t)=\cos (2 t)+e^{-t} \sin t \rightarrow \mathcal{L}(f)=\frac{s}{s^{2}+4}+\frac{1}{(s+1)^{2}+1}$. This has poles when $s^{2}+4=$ 0, so at $s= \pm 2 i ;$ and when $(s+1)^{2}+1=0$, so also at $s=-1 \pm i$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

