Part I Problems

In the next three problems, solve the given DE system $x^{\prime}=A x$.
First find the eigenvalues and associated eigenvectors, and from these construct the normal modes and thus the general solution.

Problem 1: Solve $\mathbf{x}^{\prime}=A \mathbf{x}$, where A is $\left[\begin{array}{ll}-3 & 4 \\ -2 & 3\end{array}\right]$.
Problem 2: Solve $\mathbf{x}^{\prime}=A \mathbf{x}$ where A is $\left[\begin{array}{ll}4 & -3 \\ 8 & -6\end{array}\right]$.
Problem 3: Solve $\mathbf{x}^{\prime}=A \mathbf{x}$ where A is $\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 2 & 1 \\ -2 & 1 & -1\end{array}\right]$.
Problem 4: Find the real solutions to the system $+\mathbf{x}^{\prime}=A \mathbf{x}=\left[\begin{array}{cc}3 & -4 \\ 4 & 3\end{array}\right] \mathbf{x}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

