Worked Example: Distinct Real Roots

Problem. Find the general solution to

$$
\dot{\mathbf{u}}=A \mathbf{u}, \quad \text { where } \quad A=\left(\begin{array}{ll}
-2 & 1 \\
-4 & 3
\end{array}\right) .
$$

Find the solution with initial conditions $\mathbf{u}(0)=(1,0)^{T}$. Throughout, comments are given in italics.

Solution.

Step 0. Write down $A-\lambda I$
Even if you find the characteristic equation of A using its trace and determinant, you will need this later, for finding eigenvectors. Most students find it useful to write it down clearly at the start of the question.

$$
A-\lambda I=\left(\begin{array}{cc}
-2-\lambda & 1 \\
-4 & 3-\lambda
\end{array}\right) .
$$

Step 1. Find the characteristic equation of A.
$\overline{W e} u s e ~ t h e ~ m e t h o d ~ i n v o l v i n g ~ t h e ~ t r a c e ~ a n d ~ d e t e r m i n a n t ~ o f ~ A . ~$

$$
\begin{aligned}
\operatorname{tr}(A) & =-2+3=1 \\
\operatorname{det}(A) & =-2 \times 3-1 \times(-4)=-6+4=-2
\end{aligned}
$$

Thus $p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\lambda^{2}-\lambda-2$.
Step 2. Find the eigenvalues of A.
$\overline{T h e s e ~ a r e ~ t h e ~ r o o t s ~ o f ~ t h e ~ c h a r a c t e r i s t i c ~ e q u a t i o n . ~ W e ~ f i n d ~ t h e m ~ b y ~ c o m p l e t i n g ~ t h e ~}$ square. We could also have used the quadratic formula or, in this case, simply factored the equation.

$$
p_{A}(\lambda)=(\lambda-1 / 2)^{2}-9 / 4 .
$$

The roots are $1 / 2 \pm 3 / 2$, so $\lambda_{1}=-1$ and $\lambda_{2}=2$.
Step 3. Find associated eigenvectors.
$\overline{3 a}$. Eigenvector for λ_{1}. This is vector $\mathbf{a}=\left(a_{1}, a_{2}\right)^{T}$ that must satisfy

$$
\begin{aligned}
(A+I) \mathbf{a}=0 & \Leftrightarrow \quad\left(\begin{array}{cc}
-2+1 & 1 \\
-4 & 3+1
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{0}{0} \\
& \Leftrightarrow \quad\left(\begin{array}{cc}
-1 & 1 \\
-4 & 4
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{0}{0} \\
& \Leftrightarrow\left\{\begin{array}{rrr}
-a_{1}+ & a_{2}=0 \\
-4 a_{1} & +4 a_{2}=0
\end{array}\right.
\end{aligned}
$$

Check: one equation is a multiple of the other, as should be the case. This is a good sign. Setting $a_{1}=1$ gives $a_{2}=1$; thus one eigenvector for λ_{1} is $(1,1)^{T}$.
3b. Eigenvector for λ_{2}. This is a vector $\left(a_{1}, a_{2}\right)^{T}$ that must satisfy:

$$
(A-2 I) \mathbf{a}=0 \Leftrightarrow\left(\begin{array}{cc}
-2-2 & 1 \\
-4 & 3-2
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{0}{0} \Leftrightarrow \begin{aligned}
& -4 a_{1}+a_{2}=0 \\
& -4 a_{1}+a_{2}=0
\end{aligned}
$$

Check: one equation is a (trivial) multiple of the other.
Setting $a_{1}=1$ gives $a_{2}=4$. Thus, one eigenvector for λ_{2} is $(1,4)^{T}$.
Step 4. Normal modes and general solution
The normal modes are $e^{-t}\binom{1}{1}$ and $e^{2 t}\binom{1}{4}$.
and the general solution is:

$$
\mathbf{u}(t)=c_{1} e^{-t}\binom{1}{1}+c_{2} e^{2 t}\binom{1}{4} .
$$

Step 5. Solution matching IC.
We solve for c_{1} and c_{2} using our initial condition. From our expression for the general solution, $\mathbf{u}(0)=c_{1}(1,1)^{T}+c_{2}(1,4)^{T}=\left(c_{1}+c_{2}, c_{1}+4 c_{2}\right)^{T}$. Thus the initial condition $\mathbf{u}(0)=(1,0)^{T}$ gives:

$$
\begin{aligned}
& c_{1}+c_{2}=1 \\
& c_{1}+4 c_{2}=0
\end{aligned} \Leftrightarrow \quad c_{2}=-1 / 3, c_{1}=4 / 3
$$

The solution we were asked for is:

$$
\mathbf{u}(t)=\frac{4}{3} e^{-t}\binom{1}{1}-\frac{1}{3} e^{2 t}\binom{1}{4} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

