
18.05 Problem Set 8, Spring 2014 Solutions 

Problem 1. (10 pts.) (a) Let x = number of heads
 
Model: x ∼ binomial(12, θ).
 
Null distribution binomial(12, 0.5).
 
Data: 3 heads in 12 tosses.
 

Since HA is one-sided the rejection region is one-sided. Since HA says that θ is small
 
it predicts a small number of heads in 12 tosses. That is, we reject H0 on a small
 
number of heads.
 

So, rejection region = left tail of null distribution.
 

c0.95 = qbinom(0.05, 12, 0.5) - 1 = 2 

Rejection region is 0 ≤ x ≤ 2. 

p = pbinom(3, 12, 0.5) = 0.072998 
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Binomial(12,15) null distribution and rejection region x ≤ 2. 

Erika concludes there is not enough evidence to reject the null hypothesis at the 
significance level 0.05. 

(b) Let n = number of tosses that were tails before the third that is heads 
Probability model: Choose two tosses in the first n+2 for heads; the n + 3rd toss 
must be heads:   

n + 2 
p(n) = (1 − θ)nθ3 . 

2

This is called the negative binomial distribution with parameters 3 and θ. Data: 9 
tails to get 3 heads. 

Since HA is one-sided we the rejection region is one-sided. Since HA is that θ is small 
it predicts a large number of tails before 3 heads. So we reject on a large number of 
tails. 

Rejection region = right tail of null distribution. 

c0.05 = qnbinom(0.95, 3, 0.5) + 1 = 9 
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http:qnbinom(0.95
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Rejection region is n ≥ 9.
 

p = 1 - pnbinom(8, 3, 0.5) = 0.032715
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Negative binomial null distribution and rejection region 

Ruthi rejects the null hypothesis in favor of HA at significance level 0.05. 

(c) No. Computing a p-value requires that the experiment be fully specified ahead 
of time so that the definition of ’data at least as extreme’ is clear. 

(d) Prior: beta(n, m) has pdf c θn−1(1 − θ)m−1 

Likelihood experiment 1: 
12 

θ3(1 − θ)9 

3 

Likelihood experiment 2: 
11 

θ3(1 − θ)9 

2 
Since the likelihoods are the same up to a constant factor the posterior has the same 
form 

c θn+3−1(1 − θ)m+9−1 

which is the pdf of a beta(n + 3,m + 9) distribution. 

The two posteriors are identical. In the Bayesian framework the same data produces 
the same posterior. 

(e) The main point is that in the frequentist framework the decision to reject or 
accept H0 depends on the exact experimental design because it uses the probabilities 
of unseen data as well as those of the actually observed data. 

Problem 2. (10 pts.) We use the χ2 test for σ2 = 1. 

Call the data x. 
σ2 = 1 
s2 = sample variance = var(data) = 2.3397 
n = 12 = number of data points 
χ2-statistic: X2 = (n − 1)s2/σ2 = 25.7372 
The one-sided p-value is p = 1 - pchisq(X2 , n-1) = 0.0071. 
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Since p < 0.05 we reject the null hypothesis H0 that σ2 = 1 in favor of the alternative 
that σ2 > 1. 

Problem 3. (10 pts.) We do a χ2 test of goodness of fit comparing the observed 
counts with the counts expected from Benford’s distribution. 

You can use either test statistic  Oi
G = 2 Oi ln . 

Ei 

or  (Oi − Ei)
2 

X2 =
Ei 

where Oi are the observed counts and Ei are the expected counts from Benford’s 
distribution. The total count = 100. 

First digit k 1 2 3 4 5 6 7 8 9 
observed 7 13 12 9 9 13 11 10 16 
expected 30.103 17.609 12.494 9.691 7.918 6.695 5.7992 5.1153 4.5757 

X2 components 17.731 1.206 0.200 0.049 0.148 5.939 4.664 4.665 28.523 

The χ2-statistics are G = 56.3919 and X2 = 62.6998.
 
There are 9 cells that must sum to 100 so the degrees of freedom = 8.
 
The p-value using G is
 

p = P (G test stat > 56.3919 | H0) = 1-pchisq(56.3919, 8) = 2.4 × 10−9 

The p-value using X2 

p = P (X2 test stat > 62.6998 | H0) = 1-pchisq(62.6998, 8) = 1.4 × 10−10 

Since p < α we reject H0 in favor of the notion that Jon and Jerry were trying to 
embezzle money. 

Problem 4. (10 pts.) 

(a) We let x = the first set of 20 numbers and y the second. R makes it almost too 
easy. We give the command var.test(x,y) R then prints out 

data: x and y 
F = 0.9703, num df = 19, denom df = 19, p-value = 0.9484 
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval: 
0.3840737 2.4515249 

sample estimates: 
ratio of variances 

0.9703434 
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The p-value is 0.9484 with F -statistic 0.9703. 

(b) We found the formula for the F statistic for this test at 
http://en.wikipedia.org/wiki/F-test_of_equality_of_variances 

sx 
2 = var(x) = 1.1302 

sy 
2 = var(y) = 1.1647 

Our F -statistic is 
2s

fstat = x = 0.9703 
2sy 

The degrees are freedom are both 19. Since the F -statistic is less than 1, the p-value 
is 

p = 2*pf(fstat, 19, 19)) = 0.9484 

which matches our result in part (a).
 

Problem 5. (10 pts.) (a) Let’s specify the assumptions and hypotheses for this
 
test.
 
We have 4 groups of data: Clean, 5-day, 10-day, full
 
Assumptions: Each group of data is drawn from a normal distribution with the same
 
variance σ2; all data is drawn independently.
 
H0: the means of all the normal distributions are equal.
 
HA: not all the means are equal.
 

The test compares the between group variance with the within group variance. Under
 
the null hypothesis both are estimates of σ2, so their ratio should be about 1. We’ll
 
reject H0 if this ratio is far from 1.
 

We used R to do the computation. Here’s the code.
 

mns = c(1.32, 1.26, 1.53, 1.39)
 
v = c(0.56, 0.80, 0.93, 0.82)
 
m = 351 # number of samples per group
 
n = length(mns) # number of groups
 
msb = m*var(mns) # between group variance
 
msw = mean(v) # within group variance
 
fstat = msb/msw
 
df1 = n-1;
 
df2 = n*(m-1)
 
p = 1 - pf(fstat, df1,df2)
 

print(fstat)
 
print(p)
 

This produced an F -statistic of 6.09453 and p = 0.00041. Since the p-value is much 
smaller than 0.05 we reject H0. 

http://en.wikipedia.org/wiki/F-test_of_equality_of_variances
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(b) To compare all 4 means 2 at time would require

2
4 = 6 t-tests. If we run six
 

tests it is not appropriate to claim the significance level of each one is the significance
 
level of the collection.
 

(c) We compare 10-day beards with each of the others. In each case we have: H0:
 
the means are the same
 
HA: the 10-day mean is greater than the other mean.
 

Note carefully that this is a one-sided test while the F -test in part (b) is a two-sided 
test. 

From the class 19 reading we have the t-statistic for two samples. Since both samples 
have the same size m = 351 the formula looks a little simpler. 

x̄− ȳ
t = , 

s¯−ȳx

where the pooled sample variance is 

2 2s
2 + s
x y
s
P = 

m 

Note: the test assumes equal variances which we should verify in each case. This 
raises the issue of multiple tests from the same data, but it is legitimate to do this as 
exploratory analyis which merely suggests directions for further study. 

The following table shows the one-sided, 2-sample t-test comparing the mean of the 
10-day growth against the other three states. 

t-stat one-sided p-value F -stat 
clean 3.22314 0.00066 10.38866 
5-day 3.84587 0.00007 14.79069 
full 1.98273 0.02389 3.93120 

We also give the F -statistic for the two samples. You can check that the F -statistic 
for two-samples is just the square of the t-statistic. 

We reiterate, with multiple testing the true significance level of the test is larger than 
the significance level for each individual test. 



MIT OpenCourseWare
http://ocw.mit.edu

18.05 Introduction to Probability and Statistics
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



