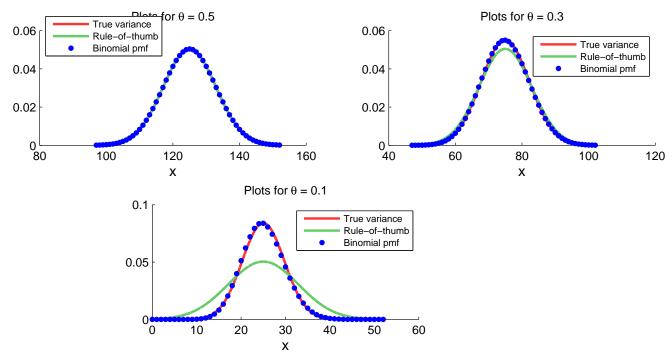
18.05 Problem Set 9, Spring 2014 Solutions

Problem 1. (10 pts.) (a) We have $x \sim \text{binomial}(n,\theta)$, so $E(X) = n\theta$ and $\text{Var}(X) = n\theta(1-\theta)$. The rule-of-thumb variance is just $\frac{n}{4}$. So the distributions being plotted are

binomial(250, θ), N(250 θ , 250 θ (1 - θ)), N(250 θ , 250/4).

Note, the whole range is from 0 to 250, but we only plotted the parts where the graphs were not all 0.



We notice that for each θ the blue dots lie very close to the red curve. So the $N(n\theta, n\theta(1-\theta))$ distribution is quite close to the binomial (n, θ) distribution for each of the values of θ considered. In fact, this is true for all θ by the Central Limit Theorem. For $\theta = 0.5$ the rule-of-thumb gives the exact variance. For $\theta = 0.3$ the rule-of-thumb approximation is very good: it has smaller peak and slightly fatter tail. For $\theta = 0.1$ the rule-of-thumb approximation breaks down and is not very good.

In summary we can say two things about the rule-of-thumb approximation:

1. It is good for θ near 0.5 and breaks down for extreme values of θ . 2. Since the rule-of-thumb overestimates the variance (the rule-of-thumb graphs are shorter and wider) it gives us a confidence interval that is larger than is srictly necessary. That is a 95% rule-of-thumb interval actually has a greater than 95% confidence level.

(b) Using the rule-of-thumb approximation, we know that \bar{x} is approximately $N(\theta, 1/4n)$. For an 80% confidence interval, we have $\alpha = 0.2$ so

$$z_{\alpha/2} = \text{qnorm}(0.9,0,1) = 1.2815.$$

So the 80% confidence interval for θ is given by

$$\left[\bar{x} - \frac{z_{0.1}}{2\sqrt{n}}, \bar{x} + \frac{z_{0.1}}{2\sqrt{n}}\right] = [0.5195, 0.6005]$$

For the 95% confidence interval, we use the rule-of-thumb that $z_{0.025} \approx 2$. So the confidence interval is

$$\left[\bar{x} - \frac{1}{\sqrt{n}}, \bar{x} + \frac{1}{\sqrt{n}}\right] = [0.497, 0.623]$$

It's okay to have used the exact value of $z_{0.025}$. This gives a confidence interval:

$$\left[\bar{x} - \frac{1.96}{2\sqrt{n}}, \bar{x} + \frac{1.96}{2\sqrt{n}}\right] = \left[0.498, 0.622\right]$$

(c) With prior Beta(1, 1), if observe x and then the posterior is Beta(x+1, 250+1-x). In our case x = 140. So, using R we get the 80% posterior probability interval:

prob_interval = [qbeta(0.1, 141, 111), qbeta(0.9, 141, 111)] = [0.51937, 0.5995]

This is quite close to the 80% confidence interval. Though the two intervals have **very different** technical meanings, we see that they are consistent (and numerically close). Both give a type of estimate of θ .

Problem 2. (10 pts.) (a) We have n = 20 and $\alpha = 0.1$ so

$$t_{\alpha/2} = qt(0.05, 19) = 1.7291.$$

Thus the 90% *t*-confidence interval is given by

$$\left[\overline{x} - t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}, \, \overline{x} + t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}\right] = [68.08993, \, 71.01007]$$

Given that the sample mean and variance are only reported to 2 decimal places the extra digits are a spurious precision. It is worth noting that to the given precision the 90% confidence interval is [68.08, 71.02]. (The problem did not ask you to do this.)

(b) We have

 $z_{\alpha/2} =$ qnorm(0.05) = 1.6448.

So the 90% z-confidence interval is given by

$$\left[\overline{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \, \overline{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right] = [68.15839, \, 70.94161]$$

As in part (a) taking the precision of the mean into account we get the interval [68.16, 70.94].

(c) We need n such that $2 \cdot z_{0.05} \cdot \sigma / \sqrt{n} = 1$. So $n = (2 \cdot z_{0.05} \cdot \sigma)^2 = 153.8$. Since you need a whole number of people the answer is n = 154.

(d) We need to find n so that $2 \cdot t_{0.05}/\sqrt{n} = 1$. Because the critical value $t_{0.05}$ depends on n the only way to find the right n is by systematically checking different values of n.

n = 157t05 = qt(0.95,n-1) = 1.6547 width = (2*sqrt(s2)*t05/sqrt(n)) = 0.99736 (very close to 1).

(Our actual code used a 'for loop' to run through the values n = 130 to n = 180 and print the width to the screen for each n.)

We find n = 157 is the first value of n where the width 90% interval is less than 1. This is not guaranteed. In an actual experiment the value of s^2 won't necessarily equal 14.26. If it happens to be smaller then then the 90% t confidence interval will have width less than 1.

Problem 3. (10 pts.) (a) The sample mean is $\bar{x} = 356$. Since $z_{0.025} = 1.96$, $\sigma = 3$ and n = 9, the 95% confidence interval is

$$\left[\bar{x} - z_{0.025} \cdot \frac{\sigma}{\sqrt{n}}, \, \bar{x} + z_{0.025} \cdot \frac{\sigma}{\sqrt{n}}\right] = [354.04, \, 357.96]$$

(b)

We have $z_{0.01} = \text{qnorm}(0.99) = 2.33$. So the 98% confidence interval is

$$\left[\bar{x} - z_{0.01} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{0.01} \cdot \frac{\sigma}{\sqrt{n}}\right] = [353.67, 358.33].$$

(c) The sample variance is

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} =$$
 var([352 351 361 353 352 358 360 358 359]) = 15.5

Since n = 9 the number of degrees of freedom for the *t*-statistic is 8.

Redo (a): $t_{8,0.025} = qt(0.975, 8) = 2.306$. So the 95% confidence interval is

$$\left[\bar{x} - t_{8,0.025} \cdot \frac{s}{\sqrt{n}}, \bar{x} + t_{8,0.025} \cdot \frac{s}{\sqrt{n}}\right] \approx [352.97, 359.03].$$

Redo (b): $t_{8,0.01} = qt(0.99, 8) = 2.896$. So the 98% confidence interval is

$$\left[\bar{x} - t_{8,0.01} \cdot \frac{s}{\sqrt{n}}, \bar{x} + t_{8,0.01} \cdot \frac{s}{\sqrt{n}}\right] \approx [352.20, 359.80].$$

These intervals are larger than the corresponding intervals from parts (a) and (b). The new uncertainly regarding the value of σ means we need larger intervals to achieve

the same level of confidence. This is reflected in the fact that the t distribution has fatter tails than the normal distribution).

Problem 4. (10 pts.) (a) This is similar to problem 3c. We assume the data is normally distributed with unknown mean μ and variance σ^2 . We have the number of data points n = 12. Using Matlab we find

data = [6.0, 6.4, 7.0, 5.8, 6.0, 5.8, 5.9, 6.7, 6.1, 6.5, 6.3, 5.8];

$$\bar{x} = \frac{\sum x_i}{n} = \text{mean(data)} = 6.1917$$

 $s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} = \text{var(data)} = 0.15356$
 $c_{0.025} = \text{qchisq}(0.975, 11) = 21.920$
 $c_{0.975} = \text{qchisq}(0.025, 11) = 3.8157$

So the 95% confidence interval is

$$\frac{(n-1)\cdot s^2}{c_{0.025}}, \frac{(n-1)\cdot s^2}{c_{0.975}} = [0.077060, 0.442683].$$

 s^2 is our point estimate for σ^2 and the confidence interval is our range estimate with 95% confidence.

(b) We have assumed that the plasma cholesterol levels are independent and normally distributed. This might not be a good assumption because cholesterol for men and women might follow different distributions. We'd have to do further exploration to understand this.

Problem 5. (10 pts.) (a) We have n = 10 and $s^2 = 4.2$ Assuming that the weights are normally distributed with mean $\mu = 52$ and variance σ^2 , we know that $\frac{(n-1)s^2}{\sigma^2} \sim \chi_9^2$. We have

$$c_{0.025} =$$
 qchisq(0.975, 9) = 19.023
 $c_{0.975} =$ qchisq(0.025, 9) = 2.7004

The 95% confidence interval for σ is given by

$$\left[\sqrt{\frac{s^2(n-1)}{c_{0.975}}}, \sqrt{\frac{s^2(n-1)}{c_{0.025}}}\right] = [1.4096, 3.7414]$$

(b) In order to use a χ^2 confidence interval we assumed that the weights of the packs of candy are independent and normally distributed with mean 52 and variance σ^2 .

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.