Bayesian Updating: Discrete Priors: 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom

SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

Courtesy of xkcd. CC-BY-NC.

http://xkcd.com/1236/

Learning from experience

Which treatment would you choose?

- 1. Treatment 1: cured 100% of patients in a trial.
- 2. Treatment 2: cured 95% of patients in a trial.
- 3. Treatment 3: cured 90% of patients in a trial.

Learning from experience

Which treatment would you choose?

- 1. Treatment 1: cured 100% of patients in a trial.
- 2. Treatment 2: cured 95% of patients in a trial.
- 3. Treatment 3: cured 90% of patients in a trial.

Which treatment would you choose?

- 1. Treatment 1: cured 3 out of 3 patients in a trial.
- 2. Treatment 2: cured 19 out of 20 patients treated in a trial.

3. Standard treatment: cured 90000 out of 100000 patients in clinical practice.

Which die is it?

- Jon has a bag containing dice of two types: 4-sided and 20-sided.
- Suppose he picks a die at random and rolls it.
- Based on what Jon rolled which type would you guess he picked?

Which die is it?

- Jon has a bag containing dice of two types: 4-sided and 20-sided.
- Suppose he picks a die at random and rolls it.
- Based on what Jon rolled which type would you guess he picked?

Suppose you find out that the bag contained one 4-sided die and one 20-sided die. Does this change your guess?

Which die is it?

- Jon has a bag containing dice of two types: 4-sided and 20-sided.
- Suppose he picks a die at random and rolls it.
- Based on what Jon rolled which type would you guess he picked?

Suppose you find out that the bag contained one 4-sided die and one 20-sided die. Does this change your guess?

Suppose you find out that the bag contained one 4-sided die and 100 20-sided dice. Does this change your guess?

Learn from experience: coins

Three types of coins:

- Type A coins are fair, with probability .5 of heads
- Type B coins are bent, with probability .6 of heads
- Type C coins are bent, with probability .9 of heads

A box contains 4 coins:

2 of type *A* 1 of type *B*

1 of type C.

I pick one at random flip it and get heads.

- **1.** What was the prior (before flipping) probability the coin was of each type?
- 2. What is the posterior (after flipping) probability for each type?
- 3. What was learned by flipping the coin?

 \mathcal{H} = hypothesis: the coin is of type A (or B or C)

 $\mathcal{D}=\text{data:}\ \text{I}\ \text{flipped}\ \text{once}\ \text{and}\ \text{got}\ \text{heads}$

		unnormalized			
hypothesis	prior	likelihood	posterior	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$	
A	.5	.5	.25	.4	
В	.25	.6	.15	.24	
C	.25	.9	.225	.36	
total	1		.625	1	

Total probability: P(D) = sum of unnorm. post. column = .625

Bayes theorem:
$$P(\mathcal{H}|\mathcal{D}) = rac{P(\mathcal{D}|\mathcal{H})P(\mathcal{H})}{P(\mathcal{D})}$$

Board Question: Dice

Five dice: 4-sided, 6-sided, 8-sided, 12-sided, 20-sided.

Jon picks one at random and, without showing it to you, rolls it and reports a 13.

1. Make a table and compute the posterior probabilities that the chosen die is each of the five dice.

- 2. Same question if he rolls a 5.
- 3. Same question if he rolls a 9.

(Keep the tables for 5 and 9 handy! Do not erase!)

 $\mathcal{D}=\text{`rolled a 13'}$

		unnormalized				
hypothesis	prior	likelihood	posterior	posterior		
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$		
\mathcal{H}_4	1/5	0	0	0		
\mathcal{H}_6	1/5	0	0	0		
\mathcal{H}_8	1/5	0	0	0		
\mathcal{H}_{12}	1/5	0	0	0		
\mathcal{H}_{20}	1/5	1/20	1/100	1		
total	1		1/100	1		

 $\mathcal{D}=\text{`rolled a 5'}$

		unnormalized			
hypothesis	prior	likelihood	posterior	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$	
\mathcal{H}_4	1/5	0	0	0	
\mathcal{H}_6	1/5	1/6	1/30	0.392	
\mathcal{H}_8	1/5	1/8	1/40	0.294	
\mathcal{H}_{12}	1/5	1/12	1/60	0.196	
\mathcal{H}_{20}	1/5	1/20	1/100	0.118	
total	1		.085	1	

 $\mathcal{D}=\text{`rolled a 9'}$

		unnormalized				
hypothesis	prior	likelihood	posterior	posterior		
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$		
\mathcal{H}_4	1/5	0	0	0		
\mathcal{H}_6	1/5	0	0	0		
\mathcal{H}_8	1/5	0	0	0		
\mathcal{H}_{12}	1/5	1/12	1/60	0.625		
\mathcal{H}_{20}	1/5	1/20	1/100	0.375		
total	1		.0267	1		

Suppose Jon rolled a 5 and then a 9.

Update in two steps:

First for the 5

Then update the update for the 9.

 $\begin{array}{ll} \mathcal{D}_1 = ` rolled \ a \ 5' \\ \mathcal{D}_2 = ` rolled \ a \ 9' \\ \text{Unnorm. posterior}_1 = \mathsf{likelihood}_1 \times \mathsf{prior.} \\ \text{Unnorm. posterior}_2 = \mathsf{likelihood}_2 \times \mathsf{unnorm. posterior}_1 \end{array}$

			unnorm.		unnorm.	
hyp.	prior	likel. 1	post. 1	likel. 2	post. 2	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D}_1 \mathcal{H})$	* * *	$P(\mathcal{D}_2 \mathcal{H})$	* * *	$P(\mathcal{H} \mathcal{D}_1,\mathcal{D}_2)$
\mathcal{H}_4	1/5	0	0	0	0	0
\mathcal{H}_6	1/5	1/6	1/30	0	0	0
\mathcal{H}_8	1/5	1/8	1/40	0	0	0
\mathcal{H}_{12}	1/5	1/12	1/60	1/12	1/720	0.735
\mathcal{H}_{20}	1/5	1/20	1/100	1/20	1/2000	0.265
total	1				0.0019	1

Board Question

Suppose Jon rolled a 9 and then a 5.

- Do the Bayesian update in two steps: First update for the 9. Then update the update for the 5.
- 2. Do the Bayesian update in one step The data is $\mathcal{D} =$ '9 followed by 5'

Tabular solution: two steps

 $\begin{array}{l} \mathcal{D}_1 = \text{`rolled a 9'} \\ \mathcal{D}_2 = \text{`rolled a 5'} \\ \text{Unnorm. posterior}_1 = \text{likelihood}_1 \times \text{ prior.} \\ \text{Unnorm. posterior}_2 = \text{likelihood}_2 \times \text{ unnorm. posterior}_1 \end{array}$

			unnorm.		unnorm.	
hyp.	prior	likel. 1	post. 1	likel. 2	post. 2	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D}_1 \mathcal{H})$	* * *	$P(\mathcal{D}_2 \mathcal{H})$	* * *	$P(\mathcal{H} \mathcal{D}_1,\mathcal{D}_2)$
\mathcal{H}_4	1/5	0	0	0	0	0
\mathcal{H}_6	1/5	0	0	1/6	0	0
\mathcal{H}_8	1/5	0	0	1/8	0	0
\mathcal{H}_{12}	1/5	1/12	1/60	1/12	1/720	0.735
\mathcal{H}_{20}	1/5	1/20	1/100	1/20	1/2000	0.265
total	1				0.0019	1

Tabular solution: one step

 $\mathcal{D}=$ 'rolled a 9 then a 5'

		unnormalized			
hypothesis	prior	likelihood	posterior	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$	
\mathcal{H}_4	1/5	0	0	0	
\mathcal{H}_6	1/5	0	0	0	
\mathcal{H}_8	1/5	0	0	0	
\mathcal{H}_{12}	1/5	1/144	1/720	0.735	
\mathcal{H}_{20}	1/5	1/400	1/2000	0.265	
total	1		0.0019	1	

Board Question: probabilistic prediction

Along with finding posterior probabilities of hypotheses. We might want to make posterior predictions about the next roll.

With the same setup as before let: $D_1 =$ result of first roll $D_2 =$ result of second roll

(a) Find $P(D_1 = 5)$. (b) Find $P(D_2 = 4|D_1 = 5)$.

Solution

 $\mathcal{D}_1=\text{`rolled a 5'}$

 $\mathcal{D}_2=\text{`rolled a 4'}$

			unnorm.			
hyp.	prior	likel. 1	post. 1	post. 1	likel. 2	post. $1 imes$ likel. 2
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D}_1 \mathcal{H})$	* * *	$P(\mathcal{H} \mathcal{D}_1)$	$P(\mathcal{D}_2 \mathcal{H},\mathcal{D}_1)$	$P(\mathcal{D}_2 \mathcal{H},\mathcal{D}_1)P(\mathcal{H} \mathcal{D}_1)$
\mathcal{H}_4	1/5	0	0	0	*	0
\mathcal{H}_6	1/5	1/6	1/30	.392	1/6	.392 · 1/6
\mathcal{H}_8	1/5	1/8	1/40	.294	1/8	.294 · 1/40
\mathcal{H}_{12}	1/5	1/12	1/60	.196	1/12	.196 · 1/12
\mathcal{H}_{20}	1/5	1/20	1/100	.118	1/20	.118 \cdot 1/20
total	1		.085	1		0.124

The law of total probability tells us $P(D_1)$ is the sum of the unnormalized posterior 1 column in the table: $P(D_1) = .085$.

The law of total probability tells us $P(D_2|D_1)$ is the sum of the last column in the table: $P(D_2|D_1) = 0.124$

MIT OpenCourseWare http://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.