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Beta distribution 
Beta(a, b) has density 

(a + b − 1)!
f (θ) = θa−1(1 − θ)b−1 

(a − 1)!(b − 1)! 

Observation: 
The coefficient is a normalizing factor, so if we have a pdf 

f (θ) = cθa−1(1 − θ)b−1 

then 
θ ∼ beta(a, b) 

and 
(a + b − 1)! 

c = 
(a − 1)!(b − 1)! 
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Board question preamble: beta priors 
Suppose you have a coin with unknown probability of heads θ. You 
don’t know that it’s fair, but your prior belief is that it’s probably not 
too unfair. You capture this intuition in with a beta(5,5) prior on θ. 
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Beta(5,5) for θ

In order to sharpen this distribution you take data and update the 
prior. 

Question on next slide. 
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Board question: beta priors  

(a + b − 1)!
Beta(a, b): f (θ) = θa−1(1 − θ)b−1 

(a − 1)!(b − 1)! 
Coin has prior f (θ) ∼ beta(5, 5) 

1. Suppose you flip 10 times and get 6 heads. Find the posterior 
distribution on θ. Identify the type of the posterior distribution. 

2. Suppose you recorded the order of the flips and got 
H H H T T H H H T T. Find the posterior based on this data. 

3. Using your answer to (2) give an integral for the posterior 
predictive probability of heads on the next toss. 

4. Use what you know about pdf’s to evaluate the integral without 
computing it directly 
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� 

� 

Predictive probabilities 
Continuous hypotheses θ, discrete data x1, x2, . . . 
(Assume trials are independent.) 

Prior predictive probability 

p(x1) = p(x1 | θ)f (θ) dθ 

Posterior predictive probability 

p(x2 | x1) = p(x2 | θ)f (θ | x1) dθ 

Analogous to discrete hypotheses: H1, H2, . . .. 
n n

p(x1) = 
1 

p(x1 |Hi )P(Hi ) p(x2 | x1) = 
1 

p(x2 |Hi )p(Hi | x1). 
i=1 i=1 
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Concept Question  

Suppose your prior f (θ) in the bent coin example is Beta(6, 8). You 
flip the coin 7 times, getting 2 heads and 5 tails. What is the 
posterior pdf f (θ|x)? 

1. Beta(2,5) 

2. Beta(3,6) 

3. Beta(6,8) 
4. Beta(8,13) 
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Continuous priors, continuous data 
Bayesian update tables with and without infinitesimals 

hypoth. prior likeli. 
unnormalized 
posterior posterior 

θ f (θ) f (x | θ) f (x | θ)f (θ) f (θ | x) = 
f (x | θ)f (θ) 

f (x) 

total 1 f (x) 1 

unnormalized 
hypoth. prior likeli. posterior posterior 

θ ± dθ 
2 f (θ) dθ f (x | θ) dx f (x | θ)f (θ) dθ dx f (θ | x) dθ = 

f (x | θ)f (θ) dθ dx 
f (x) dx 

total 1 f (x) dx 1 

f (x) = f (x | θ)f (θ) dθ 
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Normal prior, normal data 
N(µ, σ2) has density 

1 −(y−µ)2/2σ2 
f (y) = √ e . 

σ 2π 

Observation: 
The coefficient is a normalizing factor, so if we have a pdf 

−(y −µ)2/2σ2 
f (y) = ce 

then 
y ∼ N(µ, σ2) 

and 
1 

c = √ 
σ 2π 
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Board question: normal prior, normal data  

−(y−µ)2/2σ2 
N(µ, σ2) has pdf: f (y) = √ 1 

e . 
σ 2π 

Suppose our data follows a N(θ, 4) distribution with unknown 
mean θ and variance 4. That is 

f (x | θ) = pdf of N(θ, 4) 

Suppose our prior on θ is N(3, 1). 

Suppose we obtain data x1 = 5. 

1. Use the data to find the posterior pdf for θ. 

Write out your tables clearly. Use (and understand) infinitesimals. 
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Solution graphs  

prior = blue; posterior = purple; data = red 

Data: x1 = 5 
Prior: µprior = 3; σprior = 1 
Posterior is normal µposterior = 3.4; σposterior = 0.894 
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Board question: Romeo and Juliet  

Romeo is always late. How late follows a uniform distribution 
uniform(0, θ) with unknown parameter θ in hours. 

Juliet knows that θ ≤ 1 hour and she assumes a flat prior for θ on 
[0, 1]. 

On their first date Romeo is 15 minutes late. 

(a) find and graph the prior and posterior pdf’s for θ 

(b) find and graph the prior predictive and posterior predictive pdf’s 
of how late Romeo will be on the second data (if he gets one!). 
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Solution continued  

Prior and posterior pdf’s for θ. 
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Solution continued  

Prior (red) and posterior (blue) predictive pdf’s for x2 
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From discrete to continuous Bayesian updating  

Bent coin with unknown probability of heads θ.  

Data x1: heads on one toss.  

Start with a flat prior and update:  

hyp. prior likelihood 
unnormalized 
posterior posterior 

θ dθ θ θ dθ 2θ dθ 
Total 1 

J 1 
0 θ dθ = 1/2 1 

Posterior pdf: f (θ | x1) = 2θ. 
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Approximate continuous by discrete  

approximate the continuous range of hypotheses by a finite 
number of hypotheses. 
create the discrete updating table for the finite number of 
hypotheses. 
consider how the table changes as the number of hypotheses 
goes to infinity. 
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Chop [0, 1] into 4 intervals  

hypothesis prior likelihood un. posterior posterior

Total 1 –

n∑

i=1

θi ∆θ 1

1/4

θ = 1/8 1/8 (1/4) × (1/8) 1/16

1/4

θ = 3/8 3/8 (1/4) × (3/8) 3/161/4

θ = 5/8 5/8 (1/4) × (5/8) 5/16

1/4

θ = 7/8 7/8 (1/4) × (7/8) 7/16
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Chop [0, 1] into 12 intervals  

hypothesis prior likelihood un. posterior posterior

Total 1 –

n∑

i=1

θi ∆θ 1

1/12

θ = 1/24 1/24 (1/12)× (1/24) 1/144

1/12

θ = 3/24 3/24 (1/12)× (3/24) 3/144

1/12

θ = 5/24 5/24 (1/12)× (5/24) 5/144

1/12

θ = 7/24 7/24 (1/12)× (7/24) 7/144

1/12

θ = 9/24 9/24 (1/12)× (9/24) 9/144

1/12

θ = 11/24 11/24 (1/12)× (11/24) 11/1441/12

θ = 13/24 13/24 (1/12)× (13/24) 13/144

1/12

θ = 15/24 15/24 (1/12)× (15/24) 15/144

1/12

θ = 17/24 17/24 (1/12)× (17/24) 17/144

1/12

θ = 19/24 19/24 (1/12)× (19/24) 19/144

1/12

θ = 21/24 21/24 (1/12)× (21/24) 21/144

1/12

θ = 23/24 23/24 (1/12)× (23/24) 23/144
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Density historgram  

Density historgram for posterior pmf with 4 and 20 slices.  
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The original posterior pdf is shown in red.  
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