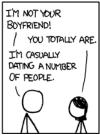
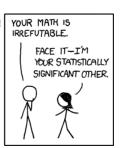
Frequentist Statistics and Hypothesis Testing

18.05 Spring 2014
Jeremy Orloff and Jonathan Bloom



BUT YOU SPEND TWICE AS MUCH TIME WITH ME AS WITH ANYONE ELSE. I'M A CLEAR OUTUER.



Courtesy of xkcd. CC-BY-NC.

http://xkcd.com/539/

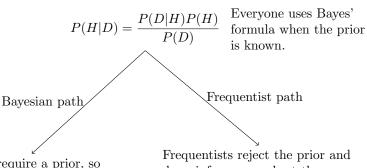
Agenda

- Introduction to the frequentist way of life.
- What is a statistic?
- NHST ingredients; rejection regions
- Simple and composite hypotheses
- z-tests, p-values

Frequentist school of statistics

- Dominant school of statistics in the 20th century.
- *p*-values, *t*-tests, χ^2 -tests, confidence intervals.
- Defines probability as long-term frequency in a repeatable random experiment.
 - Yes: probability a coin lands heads.
 - ▶ Yes: probability a given treatment cures a certain disease.
 - ▶ Yes: probability distribution for the error of a measurement.
- Rejects the use of probability to quantify incomplete knowledge, measure degree of belief in hypotheses.
 - ▶ No: prior probability for the probability an unknown coin lands heads.
 - ▶ No: prior probability on the efficacy of a treatment for a disease.
 - No: prior probability distribution for the unknown mean of a normal distribution.

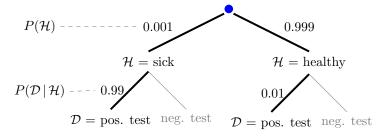
The fork in the road



Bayesians require a prior, so they develop one from the best information they have. Frequentists reject the prior and draw inferences as best they can from just the likelihood function P(D|H).

Disease screening redux: probability

The test is positive. Are you sick?



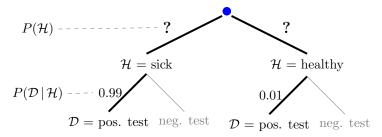
The prior is known so we can use Bayes Theorem.

$$P(\mathcal{H} = \text{ sick} \mid \mathcal{D}) = \frac{0.001 \cdot 0.99}{0.001 \cdot 0.99 + 0.999 \cdot 0.01} \approx 0.1$$

July 13, 2014 5 / 23

Disease screening redux: statistics

The test is positive. Are you sick?



The prior is not known.

Bayesian: use a subjective prior $P(\mathcal{H})$ and Bayes Theorem.

Frequentist: the likelihood is all we can use: $P(\mathcal{D} \mid \mathcal{H})$

Each day Jane arrives X hours late to class, with $X \sim \text{uniform}(0, \theta)$. Jon models his initial belief about θ by a prior pdf $f(\theta)$. After Jane arrives x hours late to the next class, Jon computes the likelihood function $f(x|\theta)$ and the posterior pdf $f(\theta|x)$.

Which of these probability computations would the frequentist consider valid?

1. none

5. prior and posterior

2. prior

6. prior and likelihood

3. likelihood

7. likelihood and posterior

4. posterior

8. prior, likelihood and posterior.

Concept answer

answer: 3. likelihood

Both the prior and posterior measure a belief in the distribution of hypotheses about the value of θ . The frequentist does not consider them valid.

The likelihood f(x|theta) is perfectly acceptable to the frequentist. It represents the probability of data from a repeatable experiment, i.e. measuring how late Jane is each day. Conditioning on θ is fine. This just fixes a model parameter θ . It doesn't require computing probabilities for values of θ .

Statistics are computed from data

Working definition. A *statistic* is anything that can be computed from random data.

A statistic cannot depend on the value of an unknown parameter.

Examples of point statistics

- Data mean
- Data maximum (or minimum)
- Maximum likelihood estimate (MLE)

A statistic is random since it is computed from random data.

We can also get more complicated statistics like interval statistics.

Suppose x_1, \ldots, x_n is a sample from $N(\mu, \sigma^2)$, where μ and σ are unknown.

- 1. Yes 2. No
- 1. The median of x_1, \ldots, x_n .

Suppose x_1, \ldots, x_n is a sample from $N(\mu, \sigma^2)$, where μ and σ are unknown.

- 1. Yes 2. No
- 1. The median of x_1, \ldots, x_n .
- 2. The interval from the .25 quantile to the .75 quantile of $N(\mu, \sigma^2)$.

Suppose x_1, \ldots, x_n is a sample from $N(\mu, \sigma^2)$, where μ and σ are unknown.

- 1. Yes 2. No
- 1. The median of x_1, \ldots, x_n .
- 2. The interval from the .25 quantile to the .75 quantile of $N(\mu, \sigma^2)$.
- 3. The standardized mean $\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}$.

Suppose x_1, \ldots, x_n is a sample from $N(\mu, \sigma^2)$, where μ and σ are unknown.

- 1. Yes 2. No
- 1. The median of x_1, \ldots, x_n .
- 2. The interval from the .25 quantile to the .75 quantile of $N(\mu, \sigma^2)$.
- 3. The standardized mean $\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}$.
- 4. The set of sample values less than 1 unit from \bar{x} .

Concept answers

- 1. Yes. The median only depends on the data x_1, \ldots, x_n .
- 2. No. This interval depends only on the distribution parameters μ and σ . It does not consider the data at all.
- 3. No. this depends on the values of the unknown parameters μ and σ .
- 4. Yes. \bar{x} depends only on the data, so the set of values within 1 of \bar{x} can all be found by working with the data.

Cards and NHST

Illustration of a royal flush removed due to copyright restrictions.

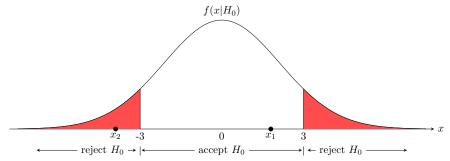
NHST ingredients

Null hypothesis: H_0

Alternative hypothesis: H_A

Test statistic: x

Rejection region: reject H_0 in favor of H_A if x is in this region



 $p(x|H_0)$ or $f(x|H_0)$: null distribution

Choosing rejection regions

Coin with probability of heads θ .

Test statistic x = the number of heads in 10 tosses.

 H_0 : 'the coin is fair', i.e. $\theta = .5$

 H_A : 'the coin is biased, i.e. $\theta \neq .5$

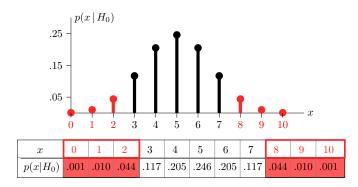
Two strategies:

- 1. Choose rejection region then compute significance level.
- 2. Choose significance level then determine rejection region.
- **** Everything is computed assuming H_0 *****

Board question

Suppose we have the coin from the previous slide.

1. The rejection region is bordered in red, what's the significance level?



2. Given significance level $\alpha = .05$ find a two-sided rejection region.

Solution

1. $\alpha = .11$

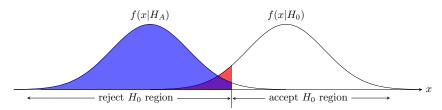
x	0	1	2	3	4	5	6	7	8	9	10
$p(x H_0)$.001	.010	.044	.117	.205	.246	.205	.117	.044	.010	.001

2. $\alpha = .05$

x	0	1	2	3	4	5	6	7	8	9	10
$p(x H_0)$.001	.010	.044	.117	.205	.246	.205	.117	.044	.010	.001

July 13, 2014

The null and alternate pdfs are shown on the following plot



The significance level of the test is given by the area of which region?

- 1. red 2. purple 3. blue 4. white
- 5. blue + purple 6. red + purple 7. white + red + purple.

<u>answer:</u> 6. Red + purple. This is the area under the pdf for H_0 above the rejection region.

17 / 23

z-tests, p-values

Normal Data: x_1, \ldots, x_n ; unknown mean μ , known σ

Hypotheses: $H_0: x_i \sim N(\mu_0, \sigma^2)$

 H_A : Two-sided: $\mu \neq \mu_0$, or one-sided: $\mu > \mu_0$

Test statistic: \bar{x}

Null distribution: $\bar{x} \sim N(\mu_0, \sigma^2/n)$.

z-value: standardized \bar{x} : $z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$

p-values: Two-sided *p*-value: $p = P(|Z| > z | H_0)$

Right-sided *p*-value: $p = P(Z > z \mid H_0)$

Significance level: For $p \le \alpha$ we reject H_0 in favor of H_A .

Visualization

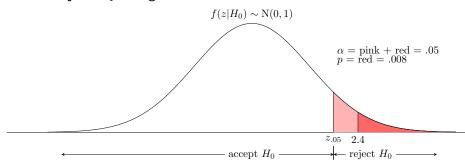
Data follows a normal distribution $N(\mu, 15^2)$ where μ is unknown.

 H_0 : $\mu = 100$

 H_A : $\mu > 100$ (one-sided)

Collect 9 data points: $\bar{x} = 112$

Can we reject H_0 at significance level .05?



Board question

- H_0 : data follows a $N(5, 10^2)$
- H_A : data follows a $N(\mu, 10^2)$ where $\mu \neq 5$.
- Test statistic: \overline{x} the average of the data.
- Data: 64 data points with $\overline{x} = 6.25$.
- Significance level set to $\alpha = .05$.
- (i) Find the rejection region; draw a picture.
- (ii) Find the z-value.
- (iii) Decide whether or not to reject H_0 in favor of H_A .
- (iv) Find the *p*-value for this data; add to your picture.

answer: See next slide

Solution

The null distribution $f(\overline{x} \mid H_0) \sim N(5, (10/8)^2)$

- (i) The rejection region is $|\overline{x} 5| > 5/2$, i.e. $(-\infty, 2.5) \cup (7.5, \infty)$, i.e more than two standard deviations from the mean.
- (ii) Standardizing $z = \frac{\overline{x} 5}{5/4} = \frac{1.25}{1.25} = 1$.
- (iii) Do not reject since z is not in the rejection region
- (iv) Use a two-sided p-value p = P(|Z| > 1) = .32

Must add figure

Board question

Two coins: probability of heads is .5 for C_1 ; and .6 for C_2 .

We pick one at random, flip it 8 times and get 6 heads.

- **1.** $H_0 = {}^{\prime}$ The coin is $C_1{}^{\prime}$ $H_A = {}^{\prime}$ The coin is $C_2{}^{\prime}$ Do you reject H_0 at the significance level $\alpha = .05$?
- **2.** $H_0=$ 'The coin is C_2 ' $H_A=$ 'The coin is C_1 ' Do you reject H_0 at the significance level $\alpha=.05$?
- **3.** Do your answers to (1) and (2) seem paradoxical?

Here are binomial (8, θ) tables for $\theta = .5$ and .6.

k	0	1	2	3	4	5	6	7	8
$p(k \theta=.5)$									
$p(k \theta=.6)$.001	.008	.041	.124	.232	.279	.209	.090	.017

Solution

- **1.** Since .6 > .5 we use a right-sided rejection region.
- Under H_0 the probability of heads is .5. Using the table we find a one sided rejection region $\{7,8\}$. That is we will reject H_0 in favor of H_A only if we get 7 or 8 heads in 8 tosses.
- Since the value of our data x = 6 is not in our rejection region we do not reject H_0 .
- **2.** Since .6 > .5 we use a left-sided rejection region.
- Now under H_0 the probability of heads is .6. Using the table we find a one sided rejection region $\{0,1,2\}$. That is we will reject H_0 in favor of H_A only if we get 0, 1 or 2 heads in 8 tosses.
- Since the value of our data x=6 is not in our rejection region we do not reject H_0 .

MIT OpenCourseWare http://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.