Confidence Intervals for Normal Data 18.05 Spring 2014
 Jeremy Orloff and Jonathan Bloom

Agenda

- Review of critical values and quantiles.
- Computing z, t, χ^{2} confidence intervals for normal data.
- Conceptual view of confidence intervals.
- Confidence intervals for polling (Bernoulli distributions).
- CLT \Rightarrow large sample confidence intervals for the mean.

Review of critical values and quantiles

- Quantile: left tail $P\left(X<q_{\alpha}\right)=\alpha$
- Critical value: right tail $P\left(X>c_{\alpha}\right)=\alpha$

Letters for critical values:

- z_{α} for $\mathrm{N}(0,1)$
- t_{α} for $t(n)$
- c_{α}, x_{α} all purpose

q_{α} and z_{α} for the standard normal distribution.

Concept question

1. $z_{.025}=$
(a) -1.96
(b) -.95
(c) .95
(d) 1.96
(e) 2.87

Concept question

1. $z_{.025}=$
(a) -1.96
(b) -.95
(c) .95
(d) 1.96
(e) 2.87
2. $-z_{.16}=$
(a) -1.33
(b) -.99
(c) .99
(d) 1.33
(e) 3.52

Solution on next slide.

Solution

1. $z_{.025}=1.96$. By definition $P\left(Z>z_{.025}\right)=.025$. This is the same as $P\left(Z \leq z_{.025}\right)=.975$. Either from memory, a table or using the R function qnorm(.975) we get the result.
2. $z_{.16}=$.99. We recall that $P(|Z|<1) \approx .68$. Since half the leftover probability is in the right tail we have $P(Z>1) \approx .16$. Thus $z .16 \approx 1$.

Computing confidence intervals from normal data

 Suppose the data x_{1}, \ldots, x_{n} is drawn from $\mathrm{N}\left(\mu, \sigma^{2}\right)$Confidence level $=1-\alpha$

- z confidence interval for the mean (σ known)

$$
\left[\bar{x}-\frac{z_{\alpha / 2} \cdot \sigma}{\sqrt{n}}, \bar{x}+\frac{z_{\alpha / 2} \cdot \sigma}{\sqrt{n}}\right]
$$

- t confidence interval for the mean (σ unknown)

$$
\left[\bar{x}-\frac{t_{\alpha / 2} \cdot s}{\sqrt{n}}, \quad \bar{x}+\frac{t_{\alpha / 2} \cdot s}{\sqrt{n}}\right]
$$

- χ^{2} confidence interval for σ^{2}

$$
\left[\frac{n-1}{c_{\alpha / 2}} s^{2}, \quad \frac{n-1}{c_{1-\alpha / 2}} s^{2}\right]
$$

- t and χ^{2} have $n-1$ degrees of freedom.

z rule of thumb

Suppose $x_{1}, \ldots, x_{n} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ with σ known.
The rule-of-thumb 95\% confidence interval for μ is:

$$
\left[\bar{x}-2 \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+2 \frac{\sigma}{\sqrt{n}}\right]
$$

A more precise 95% confidence interval for μ is:

$$
\left[\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \quad \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right]
$$

Board question: computing confidence intervals

The data $1,2,3,4$ is drawn from $\mathbf{N}\left(\mu, \sigma^{2}\right)$ with μ unknown.
(1) Find a 90% z confidence interval for μ, given that $\sigma=2$.

For the remaining parts, suppose σ is unknown.
(2) Find a $90 \% t$ confidence interval for μ.
(3) Find a $90 \% \chi^{2}$ confidence interval for σ^{2}.
(9) Find a $90 \% \chi^{2}$ confidence interval for σ.
(5) Given a normal sample with $n=100, \bar{x}=12$, and $s=5$, find the rule-of-thumb 95% confidence interval for μ.

Solution

$\bar{x}=2.5, \quad s^{2}=1.667, \quad s=1.29$
$\sigma / \sqrt{n}=1, \quad s / \sqrt{n}=.645$.

1. $z .05=1.644: z$ confidence interval is

$$
2.5 \pm 1.644 \cdot 1=[.856,4.144]
$$

2. $t_{.05}=2.353$ (3 degrees of freedom): t confidence interval is

$$
2.5 \pm 2.353 \cdot .645=[.982,4.018]
$$

3. $c_{.05}=7.1814, c_{.95}=.352$ (3 degrees of freedom): χ^{2} confidence interval is

$$
\left[\frac{3 \cdot 1.667}{7.1814}, \frac{3 \cdot 1.667}{.352}\right]=[.696,14.207]
$$

4. Take the square root of the interval in 3. [.593, 3.769].
5. The rule of thumb is written for z, but with $n=100$ the $t(99)$ and standard normal distributions are very close, so we can assume that $t_{.025} \approx 2$. Thus the 95% confidence interval is $12 \pm 2 \cdot 5 / 10=[11,13]$.

Conceptual view of confidence intervals

- Computed from data \Rightarrow interval statistic
- 'Estimates' a parameter of interest \Rightarrow interval estimate
- The width and confidence level are measures of the precision and performance of the interval estimate; comparable to power and significance level in NHST.
- Confidence intervals are a frequentist method.
- No need for a prior, only uses likelihood.
- Frequentists never assign probabilities to unknown parameters: a 95% confidence interval of $[1.2,3.4]$ for μ does not mean that $P(1.2 \leq \mu \leq 3.4)=.95$.
- We will compare with Bayesian probability intervals next time.

In the applet, the confidence interval (random interval) covers the true mean $100(1-\alpha) \%$ of the times you hit 'generate data': http://ocw.mit.edu/ans7870/18/18.05/s14/applets/confidence-jmo.html

Table discussion

How does the width of a confidence interval for the mean change if:

1. we increase n ?
2. we increase c ?
3. we increase μ ?
4. we increase σ ?
(A) it gets wider
(B) it gets narrower
(C) it stays the same.

Answers

1. Narrower. More data decreases the variance of \bar{x}
2. Wider. Greater confidence requires a bigger interval.
3. No change. Changing μ will tend to shift the location of the intervals.
4. Wider. Increasing σ will increase the uncertainty about μ.

Board question: confidence intervals, non-rejection regions

Suppose $x_{1}, \ldots, x_{n} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ with σ known.
Consider two intervals:

1. The z confidence interval around \bar{x} at confidence level $1-\alpha$.
2. The z non-rejection region for $H_{0}: \mu=\mu_{0}$ at significance level α.

Compute and sketch these intervals to show that:
μ_{0} is in the first interval $\Leftrightarrow \bar{x}$ is in the second interval.

Solution

Confidence interval: $\quad \bar{x} \pm z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}$
Non-rejection region: $\quad \mu_{0} \pm z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}$
Since the intervals are the same width they either both contain the other's center or neither one does.

Polling: binomial proportion confidence interval

Data x_{1}, \ldots, x_{n} from a Bernoulli(p) distribution with p unknown.
A normal ${ }^{\dagger}(1-\alpha)$ confidence interval for p is given by

$$
\left[\bar{x}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}, \bar{x}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right] .
$$

Proof uses the CLT and the observation $\sigma=\sqrt{p(1-p)} \leq 1 / 2$.
Political polls often give a margin of error of $\pm 1 / \sqrt{n}$, corresponding to a 95% confidence interval:

$$
\left[\bar{x}-\frac{1}{\sqrt{n}}, \bar{x}+\frac{1}{\sqrt{n}}\right] .
$$

Conversely, a margin of error of $\pm .05$ means 400 people were polled.
${ }^{\dagger}$ There are many types of binomial proportion confidence intervals. http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval Proof is in class 23 notes.

Board question

A $(1-\alpha)$ confidence interval for p is given by

$$
\left[\bar{x}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}, \bar{x}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right] .
$$

1. How many people would you have to poll to have a margin of error of .01 with 95% confidence? (You can do this in your head.)
2. How many people would you have to poll to have a margin of error of .01 with 80% confidence. (You'll want R or a table here.)
answer: 1 . Need $1 / \sqrt{n}=.01$ So $n=10000$.
3. $\alpha=.2$, so $z_{\alpha / 2}=\operatorname{qnorm}(.9)=1.2816$. So we need $\frac{z_{\alpha / 2}}{2 \sqrt{n}}=.01$. This gives $n=4106$.

Non-normal data

Suppose the data $x_{1}, x_{2}, \ldots, x_{n}$ is drawn from a distribution $f(x)$ that may not be normal or even parametric, but has finite mean, variance.

A version of the CLT says that for large n, the sampling distribution of the studentized mean is approximately standard normal:

$$
\frac{\bar{x}-\mu}{s / \sqrt{n}} \approx \mathrm{~N}(0,1)
$$

So for large n the $(1-\alpha)$ confidence interval for μ is approximately

$$
\begin{equation*}
\left[\bar{x}-\frac{s}{\sqrt{n}} \cdot z_{\alpha / 2}, \quad \bar{x}+\frac{s}{\sqrt{n}} \cdot z_{\alpha / 2}\right] \tag{1}
\end{equation*}
$$

where $z_{\alpha / 2}$ is the $\alpha / 2$ critical value for $\mathrm{N}(0,1)$.
This is called the large sample confidence interval.

MIT OpenCourseWare
http://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

