Bootstrapping
 18.05 Spring 2014
 Jeremy Orloff and Jonathan Bloom

Agenda

- Empirical bootstrap
- Parametric bootstrap

Resampling

Sample (size 6): $1 \begin{array}{lllll}2 & 1 & 5 & 12\end{array}$

Resample by choosing k uniformly between 1 and 6 and taking the $k^{\text {th }}$ element.

Resample (size 10): $\begin{array}{lllllllllll}5 & 1 & 1 & 1 & 12 & 1 & 2 & 1 & 1 & 5\end{array}$

A bootstrap (re)sample is always the same size as the original sample:
Bootstrap sample (size 6): $5 \begin{array}{lllllll}5 & 1 & 1 & 1 & 12 & 1\end{array}$

Empirical bootstrap confidence intervals

Use the data to estimate the variation of estimates based on the data!

- Data: x_{1}, \ldots, x_{n} drawn from a distribution F.
- Estimate a feature θ of F by a statistic $\hat{\theta}$.
- Generate many bootstrap samples $x_{1}^{*}, \ldots, x_{n}^{*}$.
- Compute the statistic θ^{*} for each bootstrap sample.
- Compute the bootstrap difference

$$
\delta^{*}=\theta^{*}-\hat{\theta}
$$

- Use the quantiles of δ^{*} to approximate quantiles of

$$
\delta=\hat{\theta}-\theta
$$

- Set a confidence interval $\left[\hat{\theta}-\delta_{1-\alpha / 2}^{*}, \hat{\theta}-\delta_{\alpha / 2}^{*}\right]$ ($\delta_{\alpha / 2}$ is the $\alpha / 2$ quantile.)

Concept question

Consider finding bootstrap confidence intervals for
I. the mean
II. the median
III. 47th percentile.

Which is easiest to find?
A. 1
B. II
C. III
D. I and II
E. II and III F. I and III G. I and II and III
answer: G. The program essentially the same for all three statistics. All that needs to change is the code for computing the specific statistic.

Board question

```
Data: 3 8 1 8 3 3
```

Bootstrap samples (each column is one bootstrap trial):
83381383

11833331
38383133
13838313
33383333
31331333
Compute a 75% confidence interval for the mean.
Compute a 75% confidence interval for the median.

Solution

$$
\begin{aligned}
& \bar{x}=4.33 \\
& \bar{x}^{*}: \\
& 3.17 \quad 3.174 .67 \quad 5.503 .172 .67 \quad 3.50 \quad 2.67 \\
& \delta^{*}: \\
& -1.17-1.17 \quad 0.33 \quad 1.17-1.17-1.67-0.83-1.67 \\
& \text { So, } \delta_{.125}^{*}=-1.67, \delta_{.875}^{*}=0.75 . \text { (For } \delta_{.875}^{*} \text { we took the average of the } \\
& \text { top two values -there are other reasonable choices.) } \\
& \text { Sort: } \\
& -1.67-1.67-1.17-1.17-1.17-0.830 .331 .17 \\
& 75 \% \mathrm{Cl}:[\bar{x}-0.75, \bar{x}+1.67]=\left[\begin{array}{llll}
3.58 & 6.00
\end{array}\right]
\end{aligned}
$$

Resampling in R

```
# This code reminds you how to use the R function sample()
to resample data.
# an arbitrary array
x = c(3, 5, 7, 9, 11, 13)
n = length(x)
# Take a bootstrap sample from x
resample.bs = sample(x, n, replace=TRUE)
print(resample.bs)
# Print the 3rd and 5th elements in resample.bs
resample.bs[c(3,5)]
```


Parametric bootstrapping

Use the data to estimate a parameter. Use the parameter to estimate the variation of the parameter estimate.

- Data: x_{1}, \ldots, x_{n} drawn from a distribution $F(\theta)$.
- Estimate θ by a statistic $\hat{\theta}$.
- Generate many bootstrap samples from $F(\hat{\theta})$.
- Compute θ^{*} for each bootstrap sample.
- Compute the difference from the estimate

$$
\delta^{*}=\theta^{*}-\hat{\theta}
$$

- Use quantiles of δ^{*} to approximate quantiles of

$$
\delta=\hat{\theta}-\theta
$$

- Use the quantiles to define a confidence interval.

Parametric sampling in R

\# an arbitrary array from binomial(15, theta) for an unknown theta
$\mathrm{x}=\mathrm{c}(3,5,7,9,11,13)$
binomSize $=15$
$\mathrm{n}=$ length (x)
thetaHat $=$ mean $(x) /$ binomSize
parametricSample = rbinom(n, binomSize, thetaHat) print(parametricSample)

Board question

Data: $655574 \sim \operatorname{binomial}(8, \theta)$

1. Estimate θ.
2. Write out the R code to generate data of 100 parametric bootstrap samples and compute an 80% confidence interval for θ.
(You will want to make use of the R function quantile().) Solution on next slide

Solution

Data: $x=655574$

1. Since θ is the expected fraction of heads for each binomial we make the estimate $\hat{\theta}=\operatorname{mean}(x) / 8=$ average fraction of heads in each binomial trial.

$$
\hat{\theta}=.667
$$

Parametric bootstrap sample: One bootstrap sample is 6 draws from a binomial $(8, \hat{\theta})$ distribution.
The R code is on the next slides.
We generate bootstrap data and compute δ^{*}. The quantiles we need are
The bootstrap principle says $\delta_{p} \approx \delta^{*}{ }_{p}$
The 80% confidence interval is

$$
\left[\hat{\theta}-\delta_{.9}^{*}, \hat{\theta}-\delta_{.1}^{*}\right]
$$

(Notice we are using quantiles not critical values here.)

```
R code for parametric bootstrap
binomSize = 8 # number of 'coin tosses' in each binomial
trial
x = c(6, 5, 5, 5, 7, 4) # given data
n = length(x) # number of data points
thetahat = mean(x)/binomSize # estimate of }
# Compute \delta* for 100 parametric bootstrap samples
nboot = 100
dstar.list = rep(0,nboot)
for (j in 1:nboot)
{
    # Genereate a parametric bootstrap sample and compute \delta*
    xstar = rbinom(n,binomSize,thetahat)
    thetastar = mean(xstar)/binomSize
    dstar.list[j] = thetastar - thetahat
}
(continued)
```


R code continued

```
# compute the confidence interval
alpha = . }
dstar_alpha2 = quantile(dstar.list, alpha/2, names=FALSE)
dstar_1minusalpha2 = quantile(dstar.list, 1-alpha/2,
names=FALSE)
CI = thetahat - c(dstar_1minusalpha2, dstar_alpha2)
print(CI)
```


Preview of linear regression

- Fit lines or polynomials to bivariate data
- Model: $y=f(x)+E$ $f(x)$ function, E random error. item Example: $y=a x+b+E$
- Example $y=a x^{2}+b x+c+E$
- Example $y=\mathrm{e}^{a x+b+E}$

MIT OpenCourseWare
http://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

