Probability Review for Final Exam
 18.05 Spring 2014
 Jeremy Orloff and Jonathan Bloom

Problem 1. (a) Four ways to fill each slot: 4^{5}.
(b) Four ways to fill the first slot and 3 ways to fill each subsequsent slot: $4 \cdot 3^{4}$.
(c) Build the sequences as follows:

Step 1: Choose which of the 5 slots gets the A : 5 ways to place the one A.
Step 2: 3^{4} ways to fill the remain 4 slots. By the rule of product there are $5 \cdot 3^{4}$ such sequences.

Problem 2. (a) $\binom{52}{5}$.
(b) Number of ways to get a full-house: $\binom{4}{2}\binom{13}{1}\binom{4}{3}\binom{12}{1}$
(c) $\frac{\binom{4}{2}\binom{13}{1}\binom{4}{3}\binom{12}{1}}{\binom{52}{5}}$

Problem 3. There are several ways to think about this. Here is one.
The 11 letters are $\mathrm{p}, \mathrm{r}, \mathrm{o}, \mathrm{b}, \mathrm{b}, \mathrm{a}, \mathrm{i}, \mathrm{i}, \mathrm{l}, \mathrm{t}, \mathrm{y}$. We use the following steps to create a sequence of these letters.
Step 1: Choose a position for the letter p: 11 ways to do this.
Step 2: Choose a position for the letter r: 10 ways to do this.
Step 3: Choose a position for the letter o: 9 ways to do this.
Step 4: Choose two positions for the two b's: 8 choose 2 ways to do this.
Step 5: Choose a position for the letter a: 6 ways to do this.
Step 6: Choose two positions for the two i's: 5 choose 2 ways to do this.
Step 7: Choose a position for the letter l: 3 ways to do this.
Step 8: Choose a position for the letter t: 2 ways to do this.
Step 9: Choose a position for the letter y: 1 ways to do this.
Multiply these all together we get:

$$
11 \cdot 10 \cdot 9 \cdot\binom{8}{2} \cdot 6 \cdot\binom{5}{2} \cdot 3 \cdot 2 \cdot 1=\frac{11!}{2!\cdot 2!}
$$

Problem 4. We are given $P(E \cup F)=3 / 4$.
$E^{c} \cap F^{c}=(E \cup F)^{c} \Rightarrow P\left(E^{c} \cap F^{c}\right)=1-P(E \cup F)=1 / 4$.

Problem 5. $\quad D$ is the disjoint union of $D \cap C$ and $D \cap C^{c}$.
So, $P(D \cap C)+P\left(D \cap C^{c}\right)=P(D)$
$\Rightarrow P\left(D \cap C^{c}\right)=P(D)-P(D \cap C)=.4-.2=.2$.
Problem 6. (a) $A=\{\mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}\}$.
$B=\{\mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$.
$C=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{TTT}\}$
(There is some ambiguity here, we'll also accept $C=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}\}$) $D=\{\mathrm{THH}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$.
(b) $A^{c}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{TTT}\}$
$A \cup(C \cap D)=\{$ HTT, THT, TTH, TTT $\}$. (Also accept \{HTT, THT, TTH $\}$.) $A \cap D^{c}=\{\mathrm{HTT}\}$.

Problem 7. (a) Slots $1,3,5,7$ are filled by $T_{1}, T_{3}, T_{5}, T_{7}$ in any order: 4! ways. Slots $2,4,6,8$ are filled by $T_{2}, T_{4}, T_{6}, T_{8}$ in any order: 4 ! ways.
answer: $4!\cdot 4!=576$.
(b) There are 8! ways to fill the 8 slots in any way.

Since each outcome is equally likely the probabilitiy is
$\frac{4!\cdot 4!}{8!}=\frac{576}{40320}=0.143=1.43 \%$.
Problem 8. Let H_{i} be the event that the $i^{\text {th }}$ hand has one king. We have the conditional probabilities

$$
P\left(H_{1}\right)=\frac{\binom{4}{1}\binom{48}{12}}{\binom{52}{13}} ; \quad P\left(H_{2} \mid H_{1}\right)=\frac{\binom{3}{1}\binom{36}{12}}{\binom{39}{13}} ; \quad P\left(H_{3} \mid H_{1} \cap H_{2}\right)=\frac{\binom{2}{1}\binom{24}{12}}{\binom{26}{13}}
$$

$P\left(H_{4} \mid H_{1} \cap H_{2} \cap H_{3}\right)=1$

$$
\begin{aligned}
P\left(H_{1} \cap H_{2} \cap H_{3} \cap H_{4}\right) & =P\left(H_{4} \mid H_{1} \cap H_{2} \cap H_{3}\right) P\left(H_{3} \mid H_{1} \cap H_{2}\right) P\left(H_{2} \mid H_{1}\right) P\left(H_{1}\right) \\
& =\frac{\binom{2}{1}\binom{24}{12}\binom{3}{1}\binom{36}{12}\binom{4}{1}\binom{48}{12}}{\binom{26}{13}\binom{39}{13}\binom{52}{13}}
\end{aligned}
$$

Problem 9. \quad Sample space $=\Omega=\{(1,1),(1,2),(1,3), \ldots,(6,6)\}=\{(i, j) \mid i, j=$ $1,2,3,4,5,6\}$.
(Each outcome is equally likely, with probability $1 / 36$.)
$A=\{(1,3),(2,2),(3,1)\}$,
$B=\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(1,3),(2,3),(4,3),(5,3),(6,3)\}$
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{2 / 36}{11 / 36}=\frac{2}{11}$.
(b) $P(A)=3 / 36 \neq P(A \mid B)$, so they are not independent.

Problem 10. We compute all the pieces needed to apply Bayes' rule.
We're given $P(T \mid B)=.7 \Rightarrow P\left(T^{c} \mid B\right)=.3, \quad P\left(T \mid B^{c}\right)=.1 \Rightarrow P\left(T^{c} \mid B^{c}\right)=.9$.
$P(B)=1.3 \times 10^{-5} \Rightarrow P\left(B^{c}\right)=1-P(B)=1-1.3 \times 10^{-5}$.
We use the law of total probability to compute $P(T)$:
$P(T)=P(T \mid B) P(B)+P\left(T \mid B^{c}\right) P\left(B^{c}\right)=.1000078$.
Now we can use Bayes' rule to answer the question:
$P(B \mid T)=\frac{P(T \mid B) P(B)}{P(T)}=9.10 \times 10^{-5}, \quad P\left(B \mid T^{c}\right)=\frac{P\left(T^{c} \mid B\right) P(B)}{P\left(T^{c}\right)}=4.33 \times 10^{-6}$,

Problem 11. For a given problem let C be the event the student gets the problem correct and K the event the student knows the answer.

The question asks for $P(K \mid C)$.
We'll compute this using Bayes' rule: $P(K \mid C)=\frac{P(C \mid K) P(K)}{P(C)}$.
We're given: $\quad P(C \mid K)=1, \quad P(K)=0.6$.
Law of total prob.:
$P(C)=P(C \mid K) P(K)+P\left(C \mid K^{c}\right) P\left(K^{c}\right)=1 \cdot 0.6+0.25 \cdot 0.4=0.7$.
Therefore $P(K \mid C)=\frac{0.6}{0.7}=.857=85.7 \%$.

Problem 12.

Here is the game tree, R_{1} means red on the first draw etc.

Summing the probability to all the B_{3} nodes we get
$P\left(B_{3}\right)=\frac{7}{10} \cdot \frac{6}{9} \cdot \frac{3}{8}+\frac{7}{10} \cdot \frac{3}{9} \cdot \frac{3}{9}+\frac{3}{10} \cdot \frac{7}{10} \cdot \frac{3}{9}+\frac{3}{10} \cdot \frac{3}{10} \cdot \frac{3}{10}=.350$.

Problem 13. We have $P(A \cup B)=1-0.42=0.58$ and we know

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Thus,

$$
P(A \cap B)=P(A)+P(B)-P(A \cup B)=0.4+0.3-0.58=0.12=(0.4)(0.3)=P(A) P(B)
$$

So A and B are independent.

Problem 14. We have

$$
\begin{aligned}
P(A \cap B \cap C) & =0.06 & & P(A \cap B)=0.12 \\
P(A \cap C) & =0.15 & & P(B \cap C)=0.2
\end{aligned}
$$

Since $P(A \cap B)=P(A \cap B \cap C)+P\left(A \cap B \cap C^{c}\right)$, we find $P\left(A \cap B \cap C^{c}\right)=0.06$. Similarly

$$
\begin{aligned}
& P\left(A \cap B \cap C^{c}\right)=0.06 \\
& P\left(A \cap B^{c} \cap C\right)=0.09 \\
& P\left(A^{c} \cap B \cap C\right)=0.14
\end{aligned}
$$

Problem 15. (a) $E=$ even numbered $=\{$ Feb, Apr, Jun, Aug, Oct, Dec $\}$.
$F=$ first half $=\{$ Jan, Feb, Mar, Apr, May, Jun $\}$.
$S=$ summer $=\{$ Jun, Jul, Aug $\}$.
(a) $E \cap F=\{$ Feb, Apr, Jun $\} \Rightarrow P(E \mid F)=3 / 6=P(E)$. So, they are independent.
(b) $E \cap S=\{$ Jun, Aug $\} \Rightarrow P(E \mid S)=2 / 3 \neq P(E)$. So, they are not independent.

Problem 16. To show A and B are not independent we need to show $P(A \cap B) \neq$ $P(A) \cdot P(B)$.
(a) No, they cannot be independent: $A \cap B=\emptyset \Rightarrow P(A \cap B)=0 \neq P(A) \cdot P(B)$.
(b) No, they cannot be independent: same reason as in part (a).
(c) No, they cannot be independent: $A \subset B \Rightarrow A \cap B=A$
$\Rightarrow P(A \cap B)=P(A)>P(A) \cdot P(B)$. The last inequality follows because $P(B)<1$.
(d) No, they cannot be independent: (This one is a little tricky.)

To ease notation, write $P(A)=a, P(B)=b$.
A and B are independent implies $P(A \cap B)=a b$.
We know $P(A \cup B)=P(A)+P(B)-P(A \cap B)=a+b-a b$.
Here's the trickiness:

$$
a+b-a b=a+b(1-a)<a+(1-a)=1, \quad \text { so } \quad P(A \cup B)<1
$$

The final bit of the proof is to show that if we assume $A \cup B$ and A are independent we are lead to a contradiction. This is easy, since if they are independent then

$$
P(A \cup B \mid A)=P(A \cup B)
$$

but it is clear that $P(A \cup B \mid A)=1$.
Since we can't have both $P(A \cup B)<1$ and $P(A \cup B)=1$ the assumption of independence must be false.

Problem 17. We compute

$$
E[X]=-2 \cdot \frac{1}{15}+-1 \cdot \frac{2}{15}+0 \cdot \frac{3] 15+1 \cdot \frac{[}{4}}{15}+2 \cdot \frac{5}{15}=\frac{2}{3}
$$

Thus

$$
\operatorname{Var}(X)=E\left(\left(X-\frac{2}{3}\right)^{2}\right)=\frac{14}{9}
$$

Problem 18. We first compute

$$
\begin{gathered}
E[X]=\int_{0}^{1} x \cdot 2 x d x=\frac{2}{3} \\
E\left[X^{2}\right]=\int_{0}^{1} x^{2} \cdot 2 x d x=\frac{1}{2} \\
E\left[X^{4}\right]=\int_{0}^{1} x^{4} \cdot 2 x d x=\frac{1}{3} .
\end{gathered}
$$

Thus,

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\frac{1}{2}-\frac{4}{9}=\frac{1}{18}
$$

and

$$
\operatorname{Var}\left(X^{2}\right)=E\left[X^{4}\right]=\left(E\left[X^{2}\right]\right)^{2}=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}
$$

Problem 19. (a) We have X values: $\begin{array}{lllll}-1 & 0 & 1\end{array}$

$$
\begin{array}{cccc}
\text { prob: } & 1 / 5 & 2 / 5 & 2 / 5 \\
X^{2} & 1 & 0 & 1
\end{array}
$$

So, $E(X)=-1 / 5+2 / 5=1 / 5$.
(b) y values: $0 \quad 1 \Rightarrow E(Y)=3 / 5$. prob: $2 / 5 \quad 3 / 5$
(c) The change of variables formula just says to use the bottom row of the table in part $(\mathrm{a}): E\left(X^{2}\right)=1 \cdot(1 / 5)+0 \cdot(2 / 5)+1 \cdot(2 / 5)=3 / 5 \quad$ (same as part (b)).
(d) $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}=3 / 5-1 / 25=14 / 25$.

Problem 20. Use $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2} \Rightarrow 3=E\left(X^{2}\right)-4 \Rightarrow E\left(X^{2}\right)=7$.

Problem 21. answer:

$\begin{array}{cccc}\text { Make a table } & X: & 0 & 1 \\ & \text { prob: } & (1-\mathrm{p}) & \mathrm{p} \\ & X^{2} & 0 & 1 .\end{array}$
From the table, $E(X)=0 \cdot(1-p)+1 \cdot p=p$.
Since X and X^{2} have the same table $E\left(X^{2}\right)=E(X)=p$.
Therefore, $\operatorname{Var}(X)=p-p^{2}=p(1-p)$.
Problem 22. Let X be the number of people who get their own hat.
Following the hint: let X_{j} represent whether person j gets their own hat. That is, $X_{j}=1$ if person j gets their hat and 0 if not.
We have, $X=\sum_{j=1}^{100} X_{j}$, so $E(X)=\sum_{j=1}^{100} E\left(X_{j}\right)$.
Since person j is equally likely to get any hat, we have $P\left(X_{j}=1\right)=1 / 100$. Thus, $X_{j} \sim \operatorname{Bernoulli}(1 / 100) \Rightarrow E\left(X_{j}\right)=1 / 100 \Rightarrow E(X)=1$.

Problem 23. For $y=0,2,4, \ldots, 2 n$,

$$
P(Y=y)=P\left(X=\frac{y}{2}\right)=\binom{n}{y / 2} \frac{1}{2} .
$$

Problem 24. We have $f_{X}(x)=1$ for $0 \leq x \leq 1$. The cdf of X is

$$
F_{X}(x)=\int_{0}^{x} f_{X}(t) d t=\int_{0}^{x} 1 d t=x .
$$

Now for $5 \leq y \leq 7$, we have

$$
F_{Y}(y)=P(Y \leq y)=P(2 X+5 \leq y)=P\left(X \leq \frac{y-5}{2}\right)=F_{X}\left(\frac{y-5}{2}\right)=\frac{y-5}{2} .
$$

Differentiating $P(Y \leq y)$ with respect to y, we get the probability density function of Y, for $5 \leq y \leq 7$,

$$
f_{Y}(y)=\frac{1}{2}
$$

Problem 25. We have cdf of X,

$$
F_{X}(x)=\int_{0}^{x} \lambda \mathrm{e}^{-\lambda x} d x=1-\mathrm{e}^{-\lambda x}
$$

Now for $y \geq 0$, we have

$$
F_{Y}(y)=P(Y \leq y)=P\left(X^{2} \leq y\right)=P(X \leq \sqrt{y})=1-\mathrm{e}^{-\lambda \sqrt{y}} .
$$

Differentiating $F_{Y}(y)$ with respect to y, we have

$$
f_{Y}(y)=\frac{\lambda}{2} y^{-\frac{1}{2}} \mathrm{e}^{-\lambda \sqrt{y}}
$$

Problem 26. (a) We first make the probability tables

X	0	2	3
prob.	0.3	0.1	0.6
Y	3	3	12

$\Rightarrow E(X)=0 \cdot 0.3+2 \cdot 0.1+3 \cdot 0.6=2$
(b) $E\left(X^{2}\right)=0 \cdot 0.3+4 \cdot 0.1+9 \cdot 0.6=5.8 \Rightarrow \operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}=5.8-4=1.8$.
(c) $E(Y)=3 \cdot 0.3+3 \cdot 0.1+12 \cdot 6=8.4$.
$\mathrm{L}(\mathrm{d}) F_{Y}(7)=P(Y \leq 7)=0.4$.

Problem 27. (a) There are a number of ways to present this.
$X \sim 3 \operatorname{binomial}(25,1 / 6)$, so

$$
P(X=3 k)=\binom{25}{k}\left(\frac{1}{6}\right)^{k}\left(\frac{5}{6}\right)^{25-k}, \quad \text { for } k=0,1,2, \ldots, 25 .
$$

(b) $X \sim 3$ binomial $(25,1 / 6)$.

Recall that the mean and variance of $\operatorname{binomial}(n, p)$ are $n p$ and $n p(1-p)$. So,
$E(X)=3 E($ textbinomial $(25,1 / 6))=3 \cdot 25 / 6=75 / 6$, and $\operatorname{Var}(X)=9 \operatorname{Var}($ textbinomial $(25,1 / 6))=9 \cdot 25($
(c) $E(X+Y)=E(X)+E(Y)=150 / 6=25$., $E(2 X)=2 E(X)=150 / 6=25$.
$\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)=250 / 4 . \operatorname{Var}(2 X)=4 \operatorname{Var}(X)=500 / 4$.
The means of $X+Y$ and $2 X$ are the same, but $\operatorname{Var}(2 X)>\operatorname{Var}(X+Y)$.
This makes sense because in $X+Y$ sometimes X and Y will be on opposite sides from the mean so distances to the mean will tend to cancel, However in $2 X$ the distance to the mean is always doubled.

Problem 28. First we find the value of a :

$$
\int_{0}^{1} f(x) d x=1=\int_{0}^{1} x+a x^{2} d x=\frac{1}{2}+\frac{a}{3} \Rightarrow a=3 / 2 .
$$

The CDF is $F_{X}(x)=P(X \leq x)$. We break this into cases:
(i) $b<0 \Rightarrow F_{X}(b)=0$.
(ii) $0 \leq b \leq 1 \Rightarrow F_{X}(b)=\int_{0}^{b} x+\frac{3}{2} x^{2} d x=\frac{b^{2}}{2}+\frac{b^{3}}{2}$.
(iii) $1<x \Rightarrow F_{X}(b)=1$.

Using F_{X} we get

$$
P(.5<X<1)=F_{X}(1)-F_{X}(.5)=1-\left(\frac{.5^{2}+.5^{3}}{2}\right)=\frac{13}{16} .
$$

Problem 29. Let $Z=X+Y$. We'll build the probability table

Z	0	1	2
(X, Y)	$(0,0)$	$(0,1),(1,0)$	$(1,1)$
prob.	$(1-p)(1-q)$	$(1-p) q+p(1-q)$	$p q$
prob.	$3 / 8$	$1 / 2$	$1 / 8$

Not binomial (probabilites for binomial are $1 / 4,1 / 2,1 / 4$).
Problem 30. (a) Note: $P(Y=1)=P(X=1)+P(X=-1)$.
Values a of Y : 0014
PMF $p_{Y}(a): \begin{array}{lll}1 / 8 & 3 / 8 & 1 / 2\end{array}$
(b) To distinguish the distribution functions we'll write F_{x} and F_{Y}.

Using the tables in part (a) and the definition $F_{X}(a)=P(X \leq a)$ etc. we get

$$
\begin{array}{rccc}
a: & 1 & 3 / 4 & \pi-3 \\
F_{X}(a): & 1 / 2 & 3 / 8 & 3 / 8 \\
F_{Y}(a): & 1 / 2 & 1 / 8 & 1 / 8
\end{array}
$$

Problem 31. The jumps in the distribution function are at $0,1 / 2,3 / 4$. The value of $p(a)$ at at a jump is the height of the jump:

$$
\begin{array}{rccc}
a: & 0 & 1 / 2 & 3 / 4 \\
p(a): & 1 / 3 & 1 / 6 & 1 / 2
\end{array}
$$

Problem 32. (i) yes, discrete, (ii) no, (iii) no, (iv) no, (v) yes, continuous (vi) no (vii) yes, continuous, (viii) yes, continuous.

Problem 33. $\quad P(1 / 2 \leq X \leq 3 / 4)=F(3 / 4)-F(1 / 2)=(3 / 4)^{2}-(1 / 2)^{2}=5 / 16$.
Problem 34. (a) $P(1 / 4 \leq X \leq 3 / 4)=F(3 / 4)-F(1 / 4)=11 / 16=.6875$.
(b) $f(x)=F^{\prime}(x)=4 x-4 x^{3}$ in $[0,1]$.

Problem 35. We compute

$$
P(X \geq 5)=1-P(X<5)=1-\int_{0}^{5} \lambda \mathrm{e}^{-\lambda x} d x=1-\left(1-\mathrm{e}^{-5 \lambda}\right)=\mathrm{e}^{-5 \lambda}
$$

(b) We want $P(X \geq 15 \mid X \geq 10)$. First observe that $P(X \geq 15, X \geq 10)=P(X \geq$ 15). From similar computations in (a), we know

$$
P(X \geq 15)=\mathrm{e}^{-15 \lambda} \quad P(X \geq 10)=\mathrm{e}^{-10 \lambda}
$$

From the definition of conditional probability,

$$
P(X \geq 15 \mid X \geq 10)=\frac{P(X \geq 15, X \geq 10)}{P(X \geq 10)}=\frac{P(X \geq 15)}{P(X \geq 10)}=\mathrm{e}^{-5 \lambda}
$$

Note: This is an illustration of the memorylessness property of the exponential distribution.

Problem 36. We have

$$
F_{X}(x)=P(X \leq x)=P(3 Z+1 \leq x)=P\left(Z \leq \frac{x-1}{3}\right)=\Phi\left(\frac{x-1}{3}\right) .
$$

(b) Differentiating with respect to x, we have

$$
f_{X}(x)=\frac{\mathrm{d}}{\mathrm{dx}} F_{X}(x)=\frac{1}{3} \phi\left(\frac{x-1}{3}\right) .
$$

Since $\phi(x)=(2 \pi)^{-\frac{1}{2}} \mathrm{e}^{-\frac{x^{2}}{2}}$, we conclude

$$
f_{X}(x)=\frac{1}{3 \sqrt{2 \pi}} \mathrm{e}^{-\frac{(x-1)^{2}}{2 \cdot 3^{2}}},
$$

which is the probability density function of the $N(1,9)$ distribution. Note: The arguments in (a) and (b) give a proof that $3 Z+1$ is a normal random variable with mean 1 and variance 9. See Problem Set 3, Question 5.
(c) We have

$$
P(-1 \leq X \leq 1)=P\left(-\frac{2}{3} \leq Z \leq 0\right)=\Phi(0)-\Phi\left(-\frac{2}{3}\right) \approx 0.2475
$$

(d) Since $E(X)=1$, $\operatorname{Var}(X)=9$, we want $P(-2 \leq X \leq 4)$. We have

$$
P(-2 \leq X \leq 4)=P(-3 \leq 3 Z \leq 3)=P(-1 \leq Z \leq 1) \approx 0.68
$$

Problem 37. (a) Note, Y follows what is called a log-normal distribution.
$F_{Y}(a)=P(Y \leq a)=P\left(e^{Z} \leq a\right)=P(Z \leq \ln (a))=\Phi(\ln (a))$.
Differentiating using the chain rule:

$$
f_{y}(a)=\frac{d}{d a} F_{Y}(a)=\frac{d}{d a} \Phi(\ln (a))=\frac{1}{a} \phi(\ln (a))=\frac{1}{\sqrt{2 \pi} a} \mathrm{e}^{-(\ln (a))^{2} / 2}
$$

(b) (i) We want to find $q_{.33}$ such that $P\left(Z \leq q_{.33}\right)=.33$. That is, we want

$$
\Phi\left(q_{.33}\right)=.33 \Leftrightarrow q_{.33}=\Phi^{-1}(.33) \text {. }
$$

(ii) We want $q .9$ such that

$$
F_{Y}\left(q_{.9}\right)=.9 \Leftrightarrow \Phi\left(\ln \left(q_{.9}\right)\right)=.9 \Leftrightarrow q_{.9}=\mathrm{e}^{\Phi^{-1}(.9)} .
$$

(iii) As in (ii) $q_{.5}=\mathrm{e}^{\Phi^{-1}(.5)}=\mathrm{e}^{0}=1$.

Problem 38. (a) answer: $\operatorname{Var}\left(X_{j}\right)=1=E\left(X_{j}^{2}\right)-E\left(X_{j}\right)^{2}=E\left(X_{j}^{2}\right)$. QED
(b) $E\left(X_{j}^{4}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{4} \mathrm{e}^{-x^{2} / 2} d x$.
(Extra credit) By parts: let $u=x^{3}, v^{\prime}=x \mathrm{e}^{-x^{2} / 2} \Rightarrow u^{\prime}=3 x^{2}, v=-\mathrm{e}^{-x^{2} / 2}$
$E\left(X_{j}^{4}\right)=\frac{1}{\sqrt{2 \pi}}\left[\left.x^{3} \mathrm{e}^{-x^{2} / 2}\right|_{\text {infty }} ^{\infty}+\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} 3 x^{2} \mathrm{e}^{-x^{2} / 2} d x\right]$
The first term is 0 and the second term is the formula for $3 E\left(X_{j}^{2}\right)=3$ (by part (a)).
Thus, $E\left(X_{j}^{4}\right)=3$.
(c) answer: $\operatorname{Var}\left(X_{j}^{2}\right)=E\left(X_{j}^{4}\right)-E\left(X_{j}^{2}\right)^{2}=3-1=2$. QED
(d) $E\left(Y_{100}\right)=E\left(100 X_{j}^{2}\right)=100 . \quad \operatorname{Var}\left(Y_{100}\right)=100 \operatorname{Var}\left(X_{j}\right)=200$.

The CLT says Y_{100} is approximately normal. Standardizing gives
$\left.P\left(Y_{100}>110\right)=P\left(\frac{Y_{100}-100}{\sqrt{200}}\right)>\frac{10}{\sqrt{200}}\right) \approx P(Z>1 / \sqrt{2})=.24$.
This last value was computed using $1-$ pnorm(1/sqrt(2), 0,1).

Problem 39.

(a) We did this in class. Let $\phi(z)$ and $\Phi(z)$ be the PDF and CDF of Z.
$F_{Y}(y)=P(Y \leq y)=P(a Z+b \leq y)=P(Z \leq(y-b) / a)=\Phi((y-b) / a)$.
Differentiating:

$$
f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y} \Phi((y-b) / a)=\frac{1}{a} \phi((y-b) / a)=\frac{1}{\sqrt{2 \pi} a} \mathrm{e}^{-(y-b)^{2} / 2 a^{2}}
$$

Since this is the density for $\mathrm{N}\left(b, a^{2}\right)$ we have shown $Y \sim \mathrm{~N}\left(b, a^{2}\right)$.
(b) By part (a), $Y \sim \mathrm{~N}\left(\mu, \sigma^{2}\right) \Rightarrow Y=\sigma Z+\mu$.

But, this implies $(Y-\mu) / \sigma=Z \sim \mathrm{~N}(0,1)$. QED

Problem 40. a) $E(W)=3 E(X)-2 E(Y)+1=6-10+1=-3$
$\operatorname{Var}(W)=9 \operatorname{Var}(X)+4 \operatorname{Var}(Y)=45+36=81$
b) Since the sum of independent normal is normal part (a) shows: $W \sim N(-3,81)$.

Let $Z \sim N(0,1)$. We standardize $W: P(W \leq 6)=P\left(\frac{W+3}{9} \leq \frac{9}{9}\right)=P(Z \leq 1) \approx .84$.

Problem 41. Let $X \sim \mathrm{U}(a, b)$. Compute $E(X)$ and $\operatorname{Var}(X)$.
Method 1
$U(a, b)$ has density $f(x)=\frac{1}{b-a}$ on $[a, b]$. So,

$$
\begin{aligned}
E(X) & =\int_{a}^{b} x f(x) d x=\frac{1}{b-a} \int_{a}^{b} x d x=\left.\frac{x^{2}}{2(b-a)}\right|_{a} ^{b}=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{a+b}{2} . \\
E\left(X^{2}\right) & =\int_{a}^{b} x^{2} f(x) d x=\frac{1}{b-a} \int_{a}^{b} x^{2} d x=\left.\frac{x^{3}}{3(b-a)}\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)}
\end{aligned}
$$

Finding $\operatorname{Var}(X)$ now requires a little algebra,

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-E(X)^{2}=\frac{b^{3}-a^{3}}{3(b-a)}-\frac{(b+a)^{2}}{4} \\
& =\frac{4\left(b^{3}-a^{3}\right)-3(b-a)(b+a)^{2}}{12(b-a)}=\frac{b^{3}-3 a b^{2}+3 a^{2} b-a^{3}}{12(b-a)}=\frac{(b-a)^{3}}{12(b-a)}=\frac{(b-a)^{2}}{12} .
\end{aligned}
$$

Method 2

There is an easier way to find $E(X)$ and $\operatorname{Var}(X)$.
Let $U \sim \mathrm{U}(a, b)$. Then the calculations above show $E(U)=1 / 2$ and $\left(E\left(U^{2}\right)=1 / 3\right.$ $\Rightarrow \operatorname{Var}(U)=1 / 3-1 / 4=1 / 12$.
Now, we know $X=(b-a) U+a$, so $E(X)=(b-a) E(U)+a=(b-a) / 2+a=(b+a) / 2$ and $\operatorname{Var}(X)=(b-a)^{2} \operatorname{Var}(U)=(b-a)^{2} / 12$.

Problem 42. In $n+m$ independent $\operatorname{Bernoulli}(p)$ trials, let S_{n} be the number of successes in the first n trials and T_{m} the number of successes in the last m trials.
(a) (a) $S_{n} \sim \operatorname{Binomial}(n, p)$, since it is the number of successes in n independent Bernoulli trials.
(b) (b) $T_{m} \sim \operatorname{Binomial}(m, p)$, since it is the number of successes in m independent Bernoulli trials.
(c) (c) $S_{n}+T_{m} \sim \operatorname{Binomial}(n+m, p)$, since it is the number of successes in $n+m$ independent Bernoulli trials.
(d) (d) Yes, S_{n} and T_{m} are independent. We haven't given a formal definition of independent random variables yet. But, we know it means that knowing S_{n} gives no information about T_{m}. This is clear since the first n trials are independent of the last m.

Problem 43. Compute the median for the exponential distribution with parameter λ. The density for this distribution is $f(x)=\lambda \mathrm{e}^{-\lambda x}$. We know (or can compute) that the distribution function is $F(a)=1-\mathrm{e}^{-\lambda a}$. The median is the value of a such that $F(a)=.5$. Thus, $1-\mathrm{e}^{-\lambda a}=0.5 \Rightarrow 0.5=\mathrm{e}^{-\lambda a} \Rightarrow \log (0.5)=-\lambda a \Rightarrow$ $a=\log (2) / \lambda$.

Problem 44. Let $X=$ the number of heads on the first 2 flips and Y the number in the last 2. Considering all 8 possibe tosses: $H H H, H H T$ etc we get the following joint pmf for X and Y

Y / X	0	1	2	
0	$1 / 8$	$1 / 8$	0	$1 / 4$
1	$1 / 8$	$1 / 4$	$1 / 8$	$1 / 2$
2	0	$1 / 8$	$1 / 8$	$1 / 4$
	$1 / 4$	$1 / 2$	$1 / 4$	1

Using the table we find

$$
E(X Y)=\frac{1}{4}+2 \frac{1}{8}+2 \frac{1}{8}+4 \frac{1}{8}=\frac{5}{4} .
$$

We know $E(X)=1=E(Y)$ so

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{5}{4}-1=\frac{1}{4}
$$

Since X is the sum of 2 independent $\operatorname{Bernoulli}(.5)$ we have $\sigma_{X}=\sqrt{2 / 4}$

$$
\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{1 / 4}{(2) / 4}=\frac{1}{2}
$$

Problem 45. As usual let $X_{i}=$ the number of heads on the $i^{\text {th }}$ flip, i.e. 0 or 1 .
Let $X=X_{1}+X_{2}+X_{3}$ the sum of the first 3 flips and $Y=X_{3}+X_{4}+X_{5}$ the sum of the last 3. Using the algebraic properties of covariance we have

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\operatorname{Cov}\left(X_{1}+X_{2}+X_{3}, X_{3}+X_{4}+X_{5}\right) \\
& =\operatorname{Cov}\left(X_{1}, X_{3}\right)+\operatorname{Cov}\left(X_{1}, X_{4}\right)+\operatorname{Cov}\left(X_{1}, X_{5}\right) \\
& +\operatorname{Cov}\left(X_{2}, X_{3}\right)+\operatorname{Cov}\left(X_{2}, X_{4}\right)+\operatorname{Cov}\left(X_{2}, X_{5}\right) \\
& +\operatorname{Cov}\left(X_{3}, X_{3}\right)+\operatorname{Cov}\left(X_{3}, X_{4}\right)+\operatorname{Cov}\left(X_{3}, X_{5}\right)
\end{aligned}
$$

Because the X_{i} are independent the only non-zero term in the above sum is $\operatorname{Cov}\left(X_{3} X_{3}\right)=\operatorname{Var}\left(X_{3}\right)=\frac{1}{4}$ Therefore, $\operatorname{Cov}(X, Y)=\frac{1}{4}$.
We get the correlation by dividing by the standard deviations. Since X is the sum of 3 independent Bernoulli(.5) we have $\sigma_{X}=\sqrt{3 / 4}$

$$
\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{1 / 4}{(3) / 4}=\frac{1}{3}
$$

Problem 46.

answer: $U=X+Y$ takes values $0,1,2$ and $V=|X-Y|$ takes values 0,1 .
The table is computed as follows:

$$
\begin{aligned}
& P(U=0, V=0)=P(X=0, Y=0)=1 / 4, \\
& P(U=1, V=0)=0 \text {, } \\
& P(U=2, V=0)=P(X=1, Y=1)=1 / 4 \text {. } \\
& P(U=0, V=1)=0 \text {, } \\
& P(U=1, V=1)=P(X=1, Y=0)+P(X=0, Y=1)=1 / 2, \\
& P(U=2, V=1)=0 \text {. }
\end{aligned}
$$

Problem 47. (a) The joint distribution is given by

$Y \backslash{ }^{X}$	1	2	3	
1	$\frac{1168}{5383}$	$\frac{825}{5383}$	$\frac{305}{5383}$	$\frac{2298}{5383}$
2	$\frac{573}{5383}$	$\frac{1312}{5383}$	$\frac{1200}{5383}$	$\frac{3085}{5383}$
	$\frac{1741}{5383}$	$\frac{2137}{5383}$	$\frac{1505}{5383}$	1

with the marginal distribution of X at right and of Y at bottom.
(b) X and Y are dependent because, for example,

$$
P(X=1 \text { and } Y=1)=\frac{1168}{5383}
$$

is not equal to

$$
P(X=1) P(Y=1)=\frac{1741}{5383} \cdot \frac{2298}{5383}
$$

Problem 48. (a) Here we have two continuous random variables X and Y with going potability density function

$$
f(x, y)=\frac{12}{5} x y(1+y) \quad \text { for } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1
$$

and $f(x, y)=0$ otherwise. So

$$
P\left(\frac{1}{4} \leq X \leq \frac{1}{2}, \frac{1}{3} \leq Y \leq \frac{2}{3}\right)=\int_{\frac{1}{4}}^{\frac{1}{2}} \int_{\frac{1}{3}}^{\frac{2}{3}} f(x, y) d y d x=\frac{41}{720}
$$

(b) $F(a, b)=\int_{0}^{a} \int_{0}^{b} f(x, y) d y d x=\frac{3}{5} a^{2} b^{2}+\frac{2}{5} a^{2} b^{3}$ for $0 \leq a \leq 1$ and $0 \leq b \leq 1$.
(c) Since $f(x, y)=0$ for $y>1$, we have

$$
F_{X}(a)=\lim _{b \rightarrow \infty} F(a, b)=F(a, 1)=a^{2} .
$$

(d) For $0 \leq x \leq 1$, we have

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{1} f(x, y) d y=2 x
$$

This is consistent with (c) because $\frac{d}{d x}\left(x^{2}\right)=2 x$.
(e) We first compute $f_{Y}(y)$ for $0 \leq y \leq 1$ as

$$
f_{Y}(y)=\int_{0}^{1} f(x, y) d x=\frac{6}{5} y(y+1)
$$

Since $f(x, y)=f_{X}(x) f_{Y}(y)$, we conclude that X and Y are independent.
Problem 49. (a) First note $E(X+s)=E(X)+s$, thus $X+s-E(X+s)=$ $X-E(X)$.
Likewise $Y+u-E(Y+u)=Y-E(Y)$.
Now using the definition of covariance we get

$$
\begin{aligned}
\operatorname{Cov}(X+s, Y+u) & =E((X+s-E(X+s)) \cdot(Y+u-E(Y+u))) \\
& =E((X-E(X)) \cdot(Y-E(Y))) \\
& =\operatorname{Cov}(X, Y) .
\end{aligned}
$$

(b) For practice, here we'll use the formula (see problem 11) $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$.

$$
\begin{aligned}
\operatorname{Cov}(r X, t Y) & =E((r X)(t Y))-E(r X) E(t Y) \\
& =r t(E(X Y)-E(X) E(Y)) \\
& =r t \operatorname{Cov}(X, Y)
\end{aligned}
$$

(c) We have

$$
\operatorname{Cov}(r X+s, t Y+u)=\operatorname{Cov}(r X, t Y)=r t \operatorname{Cov}(X, Y)
$$

where the first equality is by (a) and the second equality is by (b).

Problem 50. Using linearity of expectation, we have

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E((X-E(X))(Y-E(Y))) \\
& =E(X Y-E(X) Y-E(Y) X+E(X) E(Y)) \\
& =E(X Y)-E(X) E(Y)-E(Y) E(X)+E(X) E(Y) \\
& =E(X Y)-E(X) E(Y) .
\end{aligned}
$$

Problem 51. (a) The marginal probability $P_{Y}(1)=1 / 2$
$\Rightarrow P(X=0, Y=1)=P(X=2, Y=1)=0$.
Now each column has one empty entry. This can be computed by making the column add up to the given marginal probability.

$Y \backslash X$	0	1	2	P_{Y}
-1	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 2$
1	0	$1 / 2$	0	$1 / 2$
P_{X}	$1 / 6$	$2 / 3$	$1 / 6$	1

(b) No, X and Y are not independent.

For example, $P(X=0, Y=1)=0=1 / 12=P(X=0) \cdot P(Y=1)$.
Problem 52. For shorthand, let $P(X=a, Y=b)=p(a, b)$.
(a) $P(X=Y)=p(1,1)+p(2,2)+p(3,3)+p(4,4)=34 / 136$.
(b) $P(X+Y=5)=p(1,4)+p(2,3)+p(3,2)+p(4,1)=34 / 136$.
(c) $P(1<X \leq 3,1<Y \leq 3)=$ sum of middle 4 probabilities in table $=34 / 136$.
(d) $\{1,4\} \times\{1,4\}=\{(1,1),(1,4),(4,1),(4,4) \Rightarrow$ prob. $=34 / 136$.
X and Y are independent, so the table is computed from
Problem 53. (a) the product of the known marginal probabilities. Since they are independent, $\operatorname{Cov}(X, Y)=0$.

$Y \backslash X$	0	1	P_{Y}
0	$1 / 8$	$1 / 8$	$1 / 4$
1	$1 / 4$	$1 / 4$	$1 / 2$
2	$1 / 8$	$1 / 8$	$1 / 4$
P_{X}	$1 / 2$	$1 / 2$	1

(b) The sample space is $\Omega=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$.
$P(X=0, Z=0)=P(\{T T H, T T T\})=1 / 4$.
$P(X=0, Z=1)=P(\{T H H, T H T\})=1 / 4$.
$P(X=0, Z=2)=0$.
$P(X=1, Z=0)=0$.
$P(X=1, Z=1)=P(\{H T H, H T T\})=1 / 4$.
$P(X=1, Z=2)=P(\{H H H, H H T\})=1 / 4$.

$Z \backslash X$	0	1	P_{Z}
0	$1 / 4$	0	$1 / 4$
1	$1 / 4$	$1 / 4$	$1 / 2$
2	0	$1 / 4$	$1 / 4$
P_{X}	$1 / 2$	$1 / 2$	1

$\operatorname{Cov}(X, Z)=E(X Z)-E(X) E(Z)$.
$E(X)=1 / 2, \quad E(Z)=1, E(X Z)=\sum x_{i} y_{j} p\left(x_{i}, y_{j}\right)=3 / 4$.
$\Rightarrow \operatorname{Cov}(X, Z)=3 / 4-1 / 2=1 / 4$.
Problem 54. (a)

X	-2	-1	0	1	2	
Y						
0	0	0	$1 / 5$	0	0	$1 / 5$
1	0	$1 / 5$	0	$1 / 5$	0	$2 / 5$
4	$1 / 5$	0	0	0	$1 / 5$	$2 / 5$
	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$	$1 / 5$	1

Each column has only one nonzero value. For example, when $X=-2$ then $Y=4$, so in the $X=-2$ column, only $P(X=-2, Y=4)$ is not 0 .
(b) Using the marginal distributions: $E(X)=\frac{1}{5}(-2-1+0+1+2)=0$.
$E(Y)=0 \cdot \frac{1}{5}+1 \cdot \frac{2}{5}+4 \cdot \frac{2}{5}=2$.
(c) We show the probabilities don't multiply:
$P(X=-2, Y=0)=0=P(X=-2) \cdot P(Y=0)=1 / 25$.
Since these are not equal X and Y are not independent. (It is obvious that X^{2} is not independent of X.)
(d) Using the table from part (a) and the means computed in part (d) we get:
$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{1}{5}(-2)(4)+\frac{1}{5}(-1)(1)+\frac{1}{5}(0)(0)+\frac{1}{5}(1)(1)+\frac{1}{5}(2)(4)=0$.

Problem 55. (a) $\quad F(a, b)=P(X \leq a, Y \leq b)=\int_{0}^{a} \int_{0}^{b}(x+y) d y d x$.
Inner integral: $x y+\left.\frac{y^{2}}{2}\right|_{0} ^{b}=x b+\frac{b^{2}}{2}$. Outer integral: $\frac{x^{2}}{2} b+\left.\frac{b^{2}}{2} x\right|_{0} ^{a}=\frac{a^{2} b+a b^{2}}{2}$.
So $F(x, y)=\frac{x^{2} y+x y^{2}}{2}$ and $F(1,1)=1$.
(b) $f_{X}(x)=\int_{0}^{1} f(x, y) d y=\int_{0}^{1}(x+y) d y=x y+\left.\frac{y^{2}}{2}\right|_{0} ^{1}=x+\frac{1}{2}$.

By symmetry, $f_{Y}(y)=y+1 / 2$.
(c) To see if they are independent we check if the joint density is the product of the marginal densities.
$f(x, y)=x+y, \quad f_{X}(x) \cdot f_{Y}(y)=(x+1 / 2)(y+1 / 2)$.
Since these are not equal, X and Y are not independent.
(d) $E(X)=\int_{0}^{1} \int_{0}^{1} x(x+y) d y d x=\int_{0}^{1}\left[x^{2} y+\left.x \frac{y^{2}}{2}\right|_{0} ^{1}\right] d x=\int_{0}^{1} x^{2}+\frac{x}{2} d x=\frac{7}{12}$.
(Or, using (b), $E(X)=\int_{0}^{1} x f_{X}(x) d x=\int_{0}^{1} x(x+1 / 2) d x=7 / 12$.)
By symmetry $E(Y)=7 / 12$.
$E\left(X^{2}+Y^{2}\right)=\int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}\right)(x+y) d y d x=\frac{5}{6}$.
$E(X Y)=\int_{0}^{1} \int_{0}^{1} x y(x+y) d y d x=\frac{1}{3}$.
$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{1}{3}-\frac{49}{144}=-\frac{1}{144}$.

Problem 56.

Standardize:

$$
\begin{aligned}
P\left(\sum_{i} X_{i}<30\right) & =P\left(\frac{\frac{1}{n} \sum X_{i}-\mu}{\sigma / \sqrt{n}}<\frac{30 / n-\mu}{\sigma / \sqrt{n}}\right) \\
& \approx P\left(Z<\frac{30 / 100-1 / 5}{1 / 30}\right) \quad(\text { by the central limit theorem }) \\
& =P(Z<3) \\
& =1-.0013=.9987 \text { (from the table) }
\end{aligned}
$$

Problem 57. If $p<.5$ your expected winnings on any bet is negative, if $p=.5$ it is 0 , and if $p>.5$ is is positive. By making a lot of bets the minimum strategy will 'win' you close to the expected average. So if $p \leq .5$ you should use the maximum strategy and if $p>.5$ you should use the minumum strategy.

Problem 58. Let $\bar{X}=\frac{X_{1}+\ldots+X_{144}}{144} \Rightarrow E(\bar{X})=2$, and $\sigma_{\bar{X}}=2 / 12=1 / 6$. ($\sqrt{n}=12$)
A chain of algebra gives $P\left(X_{1}+\ldots+X_{144}\right)+P\left(\bar{X}>\frac{264}{144}\right)=P(\bar{X}>1.8333)$.
Standardization gives $P(\bar{X}>1.8333)=P\left(\frac{\bar{X}-2}{1 / 6}>\frac{1.8333-2}{1 / 6}\right)=P\left(\frac{\bar{X}-2}{1 / 6}>-1.0\right)$
Now, the Central limit theorem says $P\left(\frac{\bar{X}-2}{1 / 6}>-1.0\right) \approx P(Z>-1)=.84$

Problem 59. This is an application of the Central Limit Theorem.
$X \sim \operatorname{Bin}(n, p)$ means X is the sum of n i.i.d. $\operatorname{Bernoulli}(p)$ random variables.

We know $E(X)=n p$ and $\operatorname{Var}(X)=n p(1-p), \quad \sigma_{X}=\sqrt{n p(1-p)}$.
Since X is a sum of i.i.d. random variables, the CLT theorem says $X \approx \mathrm{~N}(n p, n p(1-p))$.
Standardization then gives $\frac{X-n p \mid}{\sqrt{n p(1-p)}} \approx \mathrm{N}(0,1)$.
Problem 60. (a) When this question was asked in a study, the number of undergraduates who chose each option was 21,21 , and 55 , respectively. This shows a lack of intuition for the relevance of sample size on deviation from the true mean (i.e., variance).
(b) The random variable X_{L}, giving the number of boys born in the larger hospital on day i, is governed by a $\operatorname{Bin}(45, .5)$ distribution. So L_{i} has a $\operatorname{Ber}\left(p_{L}\right)$ distribution with

$$
p_{L}=P(X>27)=\sum_{k=28}^{45}\binom{45}{k} .5^{45} \approx .068
$$

Similarly, the random variable X_{S}, giving the number of boys born in the smaller hospital on day i, is governed by a $\operatorname{Bin}(15, .5)$ distribution. So S_{i} has a $\operatorname{Ber}\left(p_{S}\right)$ distribution with

$$
p_{S}=P\left(X_{S}>9\right)=\sum_{k=10}^{15}\binom{15}{k} .5^{15} \approx .151
$$

We see that p_{S} is indeed greater than p_{L}, consistent with (ii).
(c) Note that $L=\sum_{i=1}^{365} L_{i}$ and $S=\sum_{i=1}^{365} S_{i}$. So L has a $\operatorname{Bin}\left(365, p_{L}\right)$ distribution and S has a $\operatorname{Bin}\left(365, p_{S}\right)$ distribution. Thus

$$
\begin{aligned}
E(L) & =365 p_{L} \approx 25 \\
E(S) & =365 p_{S} \approx 55 \\
\operatorname{Var}(L) & =365 p_{L}\left(1-p_{L}\right) \approx 23 \\
\operatorname{Var}(S) & =365 p_{S}\left(1-p_{S}\right) \approx 47
\end{aligned}
$$

(d) mean + sd in each case:

For $L, q_{.84} \approx 25+\sqrt{23}$.
For $S, q_{.84} \approx 55+\sqrt{47}$.
(e) Since L and S are independent, their joint distribution is determined by multiplying their individual distributions. Both L and S are binomial with $n=365$ and p_{L} and p_{S} computed above. Thus

$$
p_{l, s} P(L=i \text { and } S=j)=p(i, j)=\binom{365}{i} p_{L}^{i}\left(1-p_{L}\right)^{365-i}\binom{365}{j} p_{S}^{j}\left(1-p_{S}\right)^{365-j}
$$

Thus

$$
P(L>S)=\sum_{i=0}^{364} \sum_{j=i+1}^{365} p(i, j) \approx .0000916
$$

(We used R to do the computations.)

MIT OpenCourseWare
http://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

