Probability Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom

Problem 1. We compute

$$E[X] = -2 \cdot \frac{1}{15} + -1 \cdot \frac{2}{15} + 0 \cdot \frac{3]15 + 1 \cdot \frac{1}{4}}{15} + 2 \cdot \frac{5}{15} = \frac{2}{3}.$$

Thus

$$\operatorname{Var}(X) = E((X - \frac{2}{3})^2) = \frac{14}{9}.$$

Problem 2. We first compute

$$E[X] = \int_0^1 x \cdot 2x dx = \frac{2}{3}$$
$$E[X^2] = \int_0^1 x^2 \cdot 2x dx = \frac{1}{2}$$
$$E[X^4] = \int_0^1 x^4 \cdot 2x dx = \frac{1}{3}.$$

Thus,

$$\operatorname{Var}(X) = E[X^2] - (E[X])^2 = \frac{1}{2} - \frac{4}{9} = \frac{1}{18}$$

and

$$\operatorname{Var}(X^2) = E[X^4] = \left(E[X^2]\right)^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

Problem 3. Use
$$Var(X) = E(X^2) - E(X)^2 \Rightarrow 3 = E(X^2) - 4 \Rightarrow E(X^2) = 7.$$

Problem 4. <u>answer:</u> Make a table X: 0 1 prob: (1-p) p X^2 0 1. From the table, $E(X) = 0 \cdot (1-p) + 1 \cdot p = p$. Since X and X^2 have the same table $E(X^2) = E(X) = p$. Therefore, $Var(X) = p - p^2 = p(1-p)$.

Problem 5. Let X be the number of people who get their own hat. Following the hint: let X_j represent whether person j gets their own hat. That is, $X_j = 1$ if person j gets their hat and 0 if not.

We have,
$$X = \sum_{j=1}^{100} X_j$$
, so $E(X) = \sum_{j=1}^{100} E(X_j)$.

Since person j is equally likely to get any hat, we have $P(X_j = 1) = 1/100$. Thus, $X_j \sim \text{Bernoulli}(1/100) \Rightarrow E(X_j) = 1/100 \Rightarrow E(X) = 1$.

Problem 6. (a) There are a number of ways to present this. $X \sim 3 \text{ binomial}(25, 1/6)$, so

$$P(X = 3k) = {\binom{25}{k}} \left(\frac{1}{6}\right)^k \left(\frac{5}{6}\right)^{25-k}, \text{ for } k = 0, 1, 2, \dots, 25.$$

(b) $X \sim 3 \text{ binomial}(25, 1/6).$

Recall that the mean and variance of binomial(n, p) are np and np(1-p). So,

E(X) = 3 E(text binomial(25, 1/6)) = 3.25/6 = 75/6, and Var(X) = 9 Var(text binomial(25, 1/6)) = 9.25(6) = 100 Var(1000) = 1000 Var(10

(c)
$$E(X+Y) = E(X) + E(Y) = 150/6 = 25., E(2X) = 2E(X) = 150/6 = 25.$$

Var(X + Y) = Var(X) + Var(Y) = 250/4. Var(2X) = 4Var(X) = 500/4.

The means of X + Y and 2X are the same, but Var(2X) > Var(X + Y).

This makes sense because in X+Y sometimes X and Y will be on opposite sides from the mean so distances to the mean will tend to cancel, However in 2X the distance to the mean is always doubled.

Problem 7. First we find the value of *a*:

$$\int_0^1 f(x) \, dx = 1 = \int_0^1 x + ax^2 \, dx = \frac{1}{2} + \frac{a}{3} \Rightarrow a = 3/2.$$

The CDF is $F_X(x) = P(X \le x)$. We break this into cases: (i) $b < 0 \implies F_X(b) = 0$.

(ii) $0 \le b \le 1 \implies F_X(b) = \int_0^b x + \frac{3}{2}x^2 \, dx = \frac{b^2}{2} + \frac{b^3}{2}.$ (iii) $1 < x \implies F_X(b) = 1.$

Using F_X we get

$$P(.5 < X < 1) = F_X(1) - F_X(.5) = 1 - \left(\frac{.5^2 + .5^3}{2}\right) = \frac{13}{16}$$

Problem 8. (i) yes, discrete, (ii) no, (iii) no, (iv) no, (v) yes, continuous

(vi) no (vii) yes, continuous, (viii) yes, continuous.

Problem 9. (a) We compute

$$P(X \ge 5) = 1 - P(X < 5) = 1 - \int_0^5 \lambda e^{-\lambda x} dx = 1 - (1 - e^{-5\lambda}) = e^{-5\lambda}.$$

(b) We want $P(X \ge 15 | X \ge 10)$. First observe that $P(X \ge 15, X \ge 10) = P(X \ge 15)$. From similar computations in (a), we know

$$P(X \ge 15) = e^{-15\lambda}$$
 $P(X \ge 10) = e^{-10\lambda}.$

From the definition of conditional probability,

$$P(X \ge 15 | X \ge 10) = \frac{P(X \ge 15, X \ge 10)}{P(X \ge 10)} = \frac{P(X \ge 15)}{P(X \ge 10)} = e^{-5\lambda}$$

Note: This is an illustration of the memorylessness property of the exponential distribution.

Problem 10.

(a) We did this in class. Let $\phi(z)$ and $\Phi(z)$ be the PDF and CDF of Z. $F_Y(y) = P(Y \le y) = P(aZ + b \le y) = P(Z \le (y - b)/a) = \Phi((y - b)/a).$ Differentiating:

$$f_Y(y) = \frac{d}{dy}F_Y(y) = \frac{d}{dy}\Phi((y-b)/a) = \frac{1}{a}\phi((y-b)/a) = \frac{1}{\sqrt{2\pi}a}e^{-(y-b)^2/2a^2}.$$

Since this is the density for $N(b, a^2)$ we have shown $Y \sim N(b, a^2)$. **(b)** By part (a), $Y \sim N(\mu, \sigma^2) \Rightarrow Y = \sigma Z + \mu$. But, this implies $(Y - \mu)/\sigma = Z \sim N(0, 1)$. QED

Problem 11. (a) E(W) = 3E(X) - 2E(Y) + 1 = 6 - 10 + 1 = -3Var(W) = 9Var(X) + 4Var(Y) = 45 + 36 = 81

(b) Since the sum of independent normal is normal part (a) shows: $W \sim N(-3, 81)$. Let $Z \sim N(0, 1)$. We standardize W: $P(W \le 6) = P\left(\frac{W+3}{9} \le \frac{9}{9}\right) = P(Z \le 1) \approx \boxed{.84}$.

Problem 12.

Method 1

U(a,b) has density $f(x) = \frac{1}{b-a}$ on [a,b]. So,

$$E(X) = \int_{a}^{b} xf(x) \, dx = \frac{1}{b-a} \int_{a}^{b} x \, dx = \frac{x^{2}}{2(b-a)} \Big|_{a}^{b} = \frac{b^{2}-a^{2}}{2(b-a)} = \boxed{\frac{a+b}{2}}.$$
$$E(X^{2}) = \int_{a}^{b} x^{2}f(x) \, dx = \frac{1}{b-a} \int_{a}^{b} x^{2} \, dx = \frac{x^{3}}{3(b-a)} \Big|_{a}^{b} = \frac{b^{3}-a^{3}}{3(b-a)}.$$

Finding Var(X) now requires a little algebra,

$$Var(X) = E(X^2) - E(X)^2 = \frac{b^3 - a^3}{3(b-a)} - \frac{(b+a)^2}{4}$$
$$= \frac{4(b^3 - a^3) - 3(b-a)(b+a)^2}{12(b-a)} = \frac{b^3 - 3ab^2 + 3a^2b - a^3}{12(b-a)} = \frac{(b-a)^3}{12(b-a)} = \boxed{\frac{(b-a)^2}{12}}.$$

Method 2

There is an easier way to find E(X) and Var(X). Let $U \sim U(a, b)$. Then the calculations above show E(U) = 1/2 and $(E(U^2) = 1/3)$ $\Rightarrow Var(U) = 1/3 - 1/4 = 1/12$.

Now, we know X = (b-a)U+a, so E(X) = (b-a)E(U)+a = (b-a)/2+a = (b+a)/2and $Var(X) = (b-a)^2 Var(U) = (b-a)^2/12$.

Problem 13.

(a) $S_n \sim \text{Binomial}(n, p)$, since it is the number of successes in n independent Bernoulli trials.

(b) $T_m \sim \text{Binomial}(m, p)$, since it is the number of successes in m independent Bernoulli trials.

(c) $S_n + T_m \sim \text{Binomial}(n + m, p)$, since it is the number of successes in n + m independent Bernoulli trials.

(d) Yes, S_n and T_m are independent. We haven't given a formal definition of independent random variables yet. But, we know it means that knowing S_n gives no information about T_m . This is clear since the first *n* trials are independent of the last *m*.

Problem 14. Compute the median for the exponential distribution with parameter λ . The density for this distribution is $f(x) = \lambda e^{-\lambda x}$. We know (or can compute) that the distribution function is $F(a) = 1 - e^{-\lambda a}$. The median is the value of a such that F(a) = .5. Thus, $1 - e^{-\lambda a} = 0.5 \Rightarrow 0.5 = e^{-\lambda a} \Rightarrow \log(0.5) = -\lambda a \Rightarrow a = \log(2)/\lambda$.

Problem 15. (a) The joint distribution is given by

$Y \setminus X$	1	2	3	
1	$\frac{1168}{5383}$	$\frac{825}{5383}$	$\frac{305}{5383}$	$\frac{2298}{5383}$
2	$\frac{573}{5383}$	$\frac{1312}{5383}$	$\frac{1200}{5383}$	$\frac{3085}{5383}$
	$\frac{1741}{5383}$	$\frac{2137}{5383}$	$\frac{1505}{5383}$	1

with the marginal distribution of X at right and of Y at bottom.

(b) X and Y are dependent because, for example,

$$P(X = 1 \text{ and } Y = 1) = \frac{1168}{5383}$$

is not equal to

$$P(X=1)P(Y=1) = \frac{1741}{5383} \cdot \frac{2298}{5383}.$$

Problem 16. (a) Here we have two continuous random variables X and Y with going potability density function

$$f(x,y) = \frac{12}{5}xy(1+y)$$
 for $0 \le x \le 1$ and $0 \le y \le 1$,

and f(x, y) = 0 otherwise. So

$$P(\frac{1}{4} \le X \le \frac{1}{2}, \frac{1}{3} \le Y \le \frac{2}{3}) = \int_{\frac{1}{4}}^{\frac{1}{2}} \int_{\frac{1}{3}}^{\frac{2}{3}} f(x, y) dy \, dx = \frac{41}{720}.$$

(b) $F(a,b) = \int_0^a \int_0^b f(x,y) dy \, dx = \frac{3}{5}a^2b^2 + \frac{2}{5}a^2b^3$ for $0 \le a \le 1$ and $0 \le b \le 1$. (c) Since f(x,y) = 0 for y > 1, we have

$$F_X(a) = \lim_{b \to \infty} F(a, b) = F(a, 1) = a^2.$$

(d) For $0 \le x \le 1$, we have

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_0^1 f(x, y) dy = 2x.$$

This is consistent with (c) because $\frac{d}{dx}(x^2) = 2x$. (e) We first compute $f_Y(y)$ for $0 \le y \le 1$ as

$$f_Y(y) = \int_0^1 f(x, y) dx = \frac{6}{5}y(y+1).$$

Since $f(x, y) = f_X(x)f_Y(y)$, we conclude that X and Y are independent.

Problem 17. (a) The marginal probability $P_Y(1) = 1/2$ $\Rightarrow P(X = 0, Y = 1) = P(X = 2, Y = 1) = 0.$

Now each column has one empty entry. This can be computed by making the column add up to the given marginal probability.

$Y \backslash X$	0	1	2	P_Y
-1	1/6	1/6	1/6	1/2
1	0	1/2	0	1/2
P_X	1/6	2/3	1/6	1

(b) No, X and Y are not independent.

For example, $P(X = 0, Y = 1) = 0 \neq 1/12 = P(X = 0) \cdot P(Y = 1).$

Problem 18. For shorthand, let $P(X = a, Y = b) = p(a, b)$.
(a) $P(X = Y) = p(1, 1) + p(2, 2) + p(3, 3) + p(4, 4) = 34/136.$
(b) $P(X + Y = 5) = p(1, 4) + p(2, 3) + p(3, 2) + p(4, 1) = 34/136.$
(c) $P(1 < X \le 3, 1 < Y \le 3) =$ sum of middle 4 probabilities in table = 34/136.
(d) $\{1,4\} \times \{1,4\} = \{(1,1), (1,4), (4,1), (4,4) \Rightarrow \text{ prob.} = \boxed{34/136}.$

			$Y \backslash X$	0	1	P_Y
Problem 19. (a)	X and Y are independent, so the table is computed from	0	1/8	1/8	1/4	
	the product of the known marginal probabilities. Since	1	1/4	1/4	1/2	
		they are independent, $Cov(X, Y) = 0.$	2	1/8	1/8	1/4
			P_X	1/2	1/2	1

(b) The sample space is $\Omega = \{\text{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}\}$. $P(X = 0, Z = 0) = P(\{TTH, TTT\}) = 1/4$. $P(X = 0, Z = 1) = P(\{THH, THT\}) = 1/4$. P(X = 0, Z = 2) = 0. P(X = 1, Z = 0) = 0. $P(X = 1, Z = 1) = P(\{HTH, HTT\}) = 1/4$. $P(X = 1, Z = 2) = P(\{HHH, HHT\}) = 1/4$. $P(X = 1, Z = 2) = P(\{HHH, HHT\}) = 1/4$. $P(X = 1, Z = 2) = P(\{HHH, HHT\}) = 1/4$.

$$Cov(X, Z) = E(XZ) - E(X)E(Z).$$

$$E(X) = 1/2, \quad E(Z) = 1, \quad E(XZ) = \sum x_i y_j p(x_i, y_j) = 3/4.$$

$$\Rightarrow \quad Cov(X, Z) = 3/4 - 1/2 = \boxed{1/4.}$$

Problem 20. (a) $F(a,b) = P(X \le a, Y \le b) = \int_0^a \int_0^b (x+y) \, dy \, dx.$

Inner integral:
$$xy + \frac{y^2}{2}\Big|_0^b = xb + \frac{b^2}{2}$$
. Outer integral: $\frac{x^2}{2}b + \frac{b^2}{2}x\Big|_0^a = \frac{a^2b + ab^2}{2}$.
So $F(x,y) = \frac{x^2y + xy^2}{2}$ and $F(1,1) = 1$.
(b) $f_X(x) = \int_0^1 f(x,y) \, dy = \int_0^1 (x+y) \, dy = xy + \frac{y^2}{2}\Big|_0^1 = \boxed{x + \frac{1}{2}}$.
By symmetry, $\boxed{f_Y(y) = y + 1/2}$.

(c) To see if they are independent we check if the joint density is the product of the marginal densities.

$$f(x,y) = x + y, \quad f_X(x) \cdot f_Y(y) = (x + 1/2)(y + 1/2).$$

Since these are not equal, X and Y are not independent.
(d) $E(X) = \int_0^1 \int_0^1 x(x+y) \, dy \, dx = \int_0^1 \left[x^2 y + x \frac{y^2}{2} \Big|_0^1 \right] \, dx = \int_0^1 x^2 + \frac{x}{2} \, dx = \left[\frac{7}{12} \right] .$
(Or, using (b), $E(X) = \int_0^1 x f_X(x) \, dx = \int_0^1 x(x + 1/2) \, dx = 7/12.$)
By symmetry $E(Y) = 7/12.$
 $E(X^2 + Y^2) = \int_0^1 \int_0^1 (x^2 + y^2)(x+y) \, dy \, dx = \left[\frac{5}{6} \right] .$
 $E(XY) = \int_0^1 \int_0^1 xy(x+y) \, dy \, dx = \left[\frac{1}{3} \right] .$

$$\operatorname{Cov}(X,Y) = E(XY) - E(X)E(Y) = \frac{1}{3} - \frac{49}{144} = \boxed{-\frac{1}{144}}.$$

Problem 21.

Standardize:

$$P\left(\sum_{i} X_{i} < 30\right) = P\left(\frac{\frac{1}{n}\sum_{i} X_{i} - \mu}{\sigma/\sqrt{n}} < \frac{30/n - \mu}{\sigma/\sqrt{n}}\right)$$
$$\approx P\left(Z < \frac{30/100 - 1/5}{1/30}\right) \text{ (by the central limit theorem)}$$
$$= P(Z < 3)$$
$$= 1 - .0013 = .9987 \text{ (from the table)}$$

Problem 22. Let $\overline{X} = \frac{X_1 + \ldots + X_{144}}{144} \Rightarrow E(\overline{X}) = 2$, and $\sigma_{\overline{X}} = 2/12 = 1/6$. $(\sqrt{n} = 12)$

A chain of algebra gives $P(X_1 + \ldots + X_{144}) + P\left(\overline{X} > \frac{264}{144}\right) = P\left(\overline{X} > 1.8333\right).$

Standardization gives $P(\overline{X} > 1.8333) = P\left(\frac{\overline{X} - 2}{1/6} > \frac{1.8333 - 2}{1/6}\right) = P\left(\frac{\overline{X} - 2}{1/6} > -1.0\right)$ Now, the Central limit theorem says $P\left(\frac{\overline{X} - 2}{1/6} > -1.0\right) \approx P(Z > -1) = \boxed{.84}$

Problem 23. Let X_j be the IQ of a randomly selected person. We are given $E(X_j) = 100$ and $\sigma_{X_j} = 15$. Let \overline{X} be the average of the IQ's of 100 randomly selected people. We have $(\overline{X}) = 100$ and $\sigma_{\overline{X}} = 15/\sqrt{100} = 1.5$. The problem asks for $P(\overline{X} > 115)$. Standardizing we get $P(\overline{X} > 115) \approx P(Z > 10)$. This is effectively 0.

Problem 24. Data mean and variance $\bar{x} = 65$, $s^2 = 35.778$. The number of degrees of freedom is 9. We look up $t_{9,.025} = 2.262$ in the *t*-table The 95% confidence interval is

$$\left[\bar{x} - \frac{t_{9,.025}s}{\sqrt{n}}, \, \bar{x} + \frac{t_{9,.025}s}{\sqrt{n}}\right] = \left[65 - 2.262\sqrt{3.5778}, \, 65 + 2.262\sqrt{3.5778}\right] = \left[60.721, \, 69.279\right]$$

Problem 25. Suppose we have taken data x_1, \ldots, x_n with mean \bar{x} . Remember in these probabilities μ is a given (fixed) hypothesis.

$$P(|\bar{x}-\mu| \le .5 \mid \mu) = .95 \iff P\left(\frac{|\bar{x}-\mu|}{\sigma/\sqrt{n}} < \frac{.5}{\sigma/\sqrt{n}} \mid \mu\right) = .95 \iff P\left(|Z| < \frac{.5\sqrt{n}}{5}\right) = .95.$$

Using the table, we have precisely that $\frac{.5\sqrt{n}}{5} = 1.96$. So, $n = (19.6)^2 = \boxed{384}$. If we use our rule of thumb that the .95 interval is 2σ we have $\sqrt{n}/10 = 2 \implies n = 400$.

Problem 26. The rule-of-thumb is that a 95% confidence interval is $\bar{x} \pm 1/\sqrt{n}$. To be within 1% we need

$$\frac{1}{\sqrt{n}} = .01 \implies n = 10000.$$

Using $z_{.025} = 1.96$ instead the 95% confidence interval is

$$\bar{x} \pm \frac{z_{.025}}{2\sqrt{n}}.$$

To be within 1% we need

$$\frac{z_{.025}}{2\sqrt{n}} = .01 \implies n = 9604.$$

Note, we are using the standard Bernoulli approximation $\sigma \leq 1/2$.

Problem 27. The 90% confidence interval is

$$\overline{x} \pm \frac{z_{.05}}{2\sqrt{n}} = \overline{x} \pm \frac{1.64}{40}$$

We want $\overline{x} - \frac{1.64}{40} > .5$, that is $\overline{x} > .541$. So $\frac{\text{number preferring A}}{400} > .541$. So,

number preferring A > 216.4

Problem 28. A 95% confidence means about 5% = 1/20 will be wrong. You'd expect about 2 to be wrong.

With a probability p = .05 of being wrong, the number wrong follows a Binomial(40, p) distribution. This has expected value 2, and standard deviation $\sqrt{40(.05)(.95)} = 1.38$. 10 wrong is (10-2)/1.38 = 5.8 standard deviations from the mean. This would be surprising.

Problem 29. We have n = 27 and $s^2 = 5.86$. If we fix a hypothesis for σ^2 we know

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

We used R to find the critical values. (Or use the χ^2 table.)

c025 = qchisq(.975,26) = 41.923 c975 = qchisq(.025,26) = 13.844

The 95% confidence interval for σ^2 is

$$\left[\frac{(n-1)\cdot s^2}{c_{.025}}, \frac{(n-1)\cdot s^2}{c_{.975}}\right] = \left[\frac{26\cdot 5.86}{41.923}, \frac{26\cdot 5.86}{13.844}\right] = [3.6343, 11.0056]$$

We can take square roots to find the 95% confidence interval for σ

Problem 30. (a) The model is $y_i = a + bx_i + \varepsilon_i$, where ε_i is random error. We assume the errors are independent with mean 0 and the same variance for each *i* (homoscedastic).

The total error squared is

$$E^{2} = \sum (y_{i} - a - bx_{i})^{2} = (1 - a - b)^{2} + (1 - a - 2b)^{2} + (3 - a - 3b)^{2}$$

The least squares fit is given by the values of a and b which minimize E^2 . We solve for them by setting the partial derivatives of E^2 with respect to a and b to 0. In R we found that a = 1.0, b = 0.5

(b) This is similar to part (a). The model is

$$y_i = ax_{i,1} + bx_{i,2} + c + \varepsilon_i$$

where the errors ε_i are independent with mean 0 and the same variance for each *i* (homoscedastic).

The total error squared is

$$E^{2} = \sum (y_{i} - ax_{i,1} - bx_{i,2} - c)^{2} = (3 - a - 2b - c)^{2} + (5 - 2a - 3b - c)^{2} + (1 - 3a - c)^{2}$$

The least squares fit is given by the values of a, b and c which minimize E^2 . We solve for them by setting the partial derivatives of E^2 with respect to a, b and c to 0. In R we found that a = 0.5, b = 1.5, c = -0.5 18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.