Continuous Expectation and Variance, the Law of Large Numbers, and the Central Limit Theorem 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom

Expected value: measure of location, central tendency X continuous with range [a, b] and pdf f(x):

$$E(X)=\int_a^b xf(x)\,dx.$$

X discrete with values x_1, \ldots, x_n and pmf $p(x_i)$:

$$E(X) = \sum_{i=1}^n x_i p(x_i).$$

View these as essentially the same formulas.

Variance and standard deviation

Standard deviation: measure of spread, scale For *any* random variable X with mean μ

$${\sf Var}(X)=E((X-\mu)^2),\qquad \sigma=\sqrt{{\sf Var}(X)}$$

X continuous with range [a, b] and pdf f(x):

$$\operatorname{Var}(X) = \int_a^b (x - \mu)^2 f(x) \, dx.$$

X discrete with values x_1, \ldots, x_n and pmf $p(x_i)$:

$$\operatorname{Var}(X) = \sum_{i=1}^{n} (x_i - \mu)^2 p(x_i).$$

View these as essentially the same formulas.

Properties

Properties:

- 1. E(X + Y) = E(X) + E(Y). 2. E(aX + b) = aE(X) + b.
- 1. If X and Y are independent then Var(X + Y) = Var(X) + Var(Y).
- 2. $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$.
- 3. $Var(X) = E(X^2) E(X)^2$.

Board question

The random variable X has range [0,1] and pdf cx^2 . a) Find c.

b) Find the mean, variance and standard deviation of X.

c) Find the median value of X.

d) Suppose X_1, \ldots, X_{16} are independent identically-distributed copies of X. Let \overline{X} be their average. What is the standard deviation of \overline{X} ?

e) Suppose $Y = X^4$. Find the pdf of Y.

Quantiles

Quantiles give a measure of location.

 $q_{.6}$: left tail area = .6 \Leftrightarrow $F(q_{.6}) = .6$

Concept question

In each of the plots some densities are shown. The median of the black plot is always at q_p . In each plot, which density has the greatest median?

1. Black2. Red3. Blue4. All the same5. Impossible to tell

Law of Large Numbers (LoLN)

Informally: An average of many measurements is more accurate than a single measurement.

Formally: Let X_1 , X_2 , ... be i.i.d. random variables all with mean μ and standard deviation σ . Let

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i.$$

Then for any (small number) a, we have

$$\lim_{n\to\infty} P(|\overline{X}_n - \mu| < a) = 1.$$

Concept Question: Desperation

- You have \$100. You need \$1000 by tomorrow morning.
- Your only way to get it is to gamble.
- If you bet \$k, you either win \$k with probability p or lose \$k with probability 1 p.

Maximal strategy: Bet as much as you can, up to what you need, each time.

Minimal strategy: Make a small bet, say \$5, each time.

1. If p = .45, which is the better strategy? A. Maximal B. Minimal

Concept Question: Desperation

- You have \$100. You need \$1000 by tomorrow morning.
- Your only way to get it is to gamble.
- If you bet \$k, you either win \$k with probability p or lose \$k with probability 1 p.

Maximal strategy: Bet as much as you can, up to what you need, each time.

Minimal strategy: Make a small bet, say \$5, each time.

- 1. If p = .45, which is the better strategy? A. Maximal B. Minimal
- 2. If p = .8, which is the better strategy? A. Maximal B. Minimal

Histograms

Made by 'binning' data.

Frequency: *height* of bar over bin = number of data points in bin.

Density: *area* of bar is the fraction of all data points that lie in the bin. So, total area is 1.

Board question

1. Make a both a frequency and density histogram from the data below.

Use bins of width 0.5 starting at 0. The bins should be right closed.

1	1.2	1.3	1.6	1.6
2.1	2.2	2.6	2.7	3.1
3.2	3.4	3.8	3.9	3.9

2. Same question using unequal width bins with edges 0, 1, 3, 4.

Solution

Histograms with unequal width bins

LoLN and histograms

LoLN implies density histogram converges to pdf:

Histogram with bin width .1 showing 100000 draws from a standard normal distribution. Standard normal pdf is overlaid in red.

Standardization

Random variable X with mean μ and standard deviation σ .

Standardization:
$$Z = \frac{X - \mu}{\sigma}$$
.

- Z has mean 0 and standard deviation 1.
- Standardizing any normal random variable produces the standard normal.
- If $X \approx$ normal then standardized $X \approx$ stand. normal.

Concept Question: Standard Normal

1. P(-1 < Z < 1) is a) .025 b) .16 c) .68 d) .84 e) .95 2. P(Z > 2)a) .025 b) .16 c) .68 d) .84 e) .95

Central Limit Theorem

Setting: X_1 , X_2 , ... i.i.d. with mean μ and standard dev. σ . For each *n*:

$$\overline{X}_n = \frac{1}{n}(X_1 + X_2 + \ldots + X_n)$$
$$S_n = X_1 + X_2 + \ldots + X_n.$$

Conclusion: For large *n*:

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
$$S_n \approx N\left(n\mu, n\sigma^2\right)$$

Standardized S_n or $\overline{X}_n \approx N(0,1)$

Standardized average of n i.i.d. uniform random variables with n = 1, 2, 4, 12.

The standardized average of *n* i.i.d. exponential random variables with n = 1, 2, 8, 64.

The standardized average of *n* i.i.d. Bernoulli(.5) random variables with n = 1, 2, 12, 64.

The (non-standardized) average of *n* Bernoulli(.5) random variables, with n = 4, 12, 64. (Spikier.)

Table Question: Sampling from the standard normal distribution

As a table, produce a single random sample from (an approximate) standard normal distribution.

The table is allowed nine rolls of the 10-sided die.

Note:
$$\mu = 5.5$$
 and $\sigma^2 = 8.25$ for a single 10-sided die.

Hint: CLT is about averages.

Board Question: CLT

1. Carefully write the statement of the central limit theorem.

2. To head the newly formed US Dept. of Statistics, suppose that 50% of the population supports Erika, 25% supports Ruthi, and the remaining 25% is split evenly between Peter, Jon and Jerry.

A poll asks 400 random people who they support. What is the probability that at least 55% of those polled prefer Erika?

3. What is the probability that less than 20% of those polled prefer Ruthi?

MIT OpenCourseWare http://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.