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Expected value
 

Expected value: measure of location, central tendency 

X continuous with range [a, b] and pdf f (x): � b 

E (X ) = xf (x) dx . 
a 

X discrete with values x1, . . . , xn and pmf p(xi ): 

nn 
E (X ) = xi p(xi ). 

i=1 

View these as essentially the same formulas. 
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Variance and standard deviation 
Standard deviation: measure of spread, scale 

For any random variable X with mean µ  
Var(X ) = E ((X − µ)2), σ = Var(X ) 

X continuous with range [a, b] and pdf f (x): 
b 

Var(X ) = (x − µ)2f (x) dx . 
a 

X discrete with values x1, . . . , xn and pmf p(xi ): 
nn 

Var(X ) = (xi − µ)2 p(xi ). 
i=1 

View these as essentially the same formulas.
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Properties
 

Properties: 

1. E (X + Y ) = E (X ) + E (Y ). 

2. E (aX + b) = aE (X ) + b. 

1. If X and Y are independent then 
Var(X + Y ) = Var(X ) + Var(Y ). 

2. Var(aX + b) = a2Var(X ). 
3. Var(X ) = E (X 2) − E (X )2 . 
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Board question
 

2The random variable X has range [0,1] and pdf cx .
 

a) Find c .
 

b) Find the mean, variance and standard deviation of X .
 

c) Find the median value of X .
 

d) Suppose X1, . . . X16 are independent
 
identically-distributed copies of X . Let X be their
 
average. What is the standard deviation of X ?
 

e) Suppose Y = X 4 . Find the pdf of Y .
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Quantiles 
Quantiles give a measure of location. 

z

φ(z)

q.6 = .253

Area = prob. = .6

z

Φ(z)

q.6 = .253

F (q.6) = .6

1

q.6: left tail area = .6 ⇔ F (q.6) = .6
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Concept question
 

In each of the plots some densities are shown. The 
median of the black plot is always at qp. In each plot, 
which density has the greatest median? 

1. Black 2. Red 3. Blue 
4. All the same 5. Impossible to tell 
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Law of Large Numbers (LoLN)
 

Informally: An average of many measurements is more 
accurate than a single measurement. 

Formally: Let X1, X2, . . . be i.i.d. random variables all 
with mean µ and standard deviation σ. 
Let 

n
X1 + X2 + . . . + Xn 1 n 

X n = = Xi . 
n n 

i=1 

Then for any (small number) a, we have 

lim P(|X n − µ| < a) = 1. 
n→∞ 
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2. If p = .8, which is the better strategy?
A. Maximal B. Minimal

Concept Question: Desperation
 

You have $100. You need $1000 by tomorrow morning. 

Your only way to get it is to gamble. 

If you bet $k, you either win $k with probability p or lose $k with 
probability 1 − p. 

Maximal strategy: Bet as much as you can, up to what you need,
 
each time.
 
Minimal strategy: Make a small bet, say $5, each time.
 

1. If p = .45, which is the better strategy? 
A. Maximal B. Minimal 
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Histograms
 

Made by ‘binning’ data.
 

Frequency: height of bar over bin = number of data points in bin.
 

Density: area of bar is the fraction of all data points that lie in the
 
bin. So, total area is 1.
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Board question
 

1. Make a both a frequency and density histogram from the data 
below. 

Use bins of width 0.5 starting at 0. The bins should be right closed. 

1 1.2 1.3 1.6 1.6 
2.1 2.2 2.6 2.7 3.1 
3.2 3.4 3.8 3.9 3.9 

2. Same question using unequal width bins with edges 0, 1, 3, 4. 
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Solution
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LoLN and histograms
 

LoLN implies density histogram converges to pdf: 
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Histogram with bin width .1 showing 100000 draws from 
a standard normal distribution. Standard normal pdf is 
overlaid in red. 
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Standardization
 

Random variable X with mean µ and standard deviation 
σ. 

X − µ
Standardization: Z = . 

σ 

Z has mean 0 and standard deviation 1. 

Standardizing any normal random variable produces 
the standard normal. 

If X ≈ normal then standardized X ≈ stand. normal. 
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Concept Question: Standard Normal
 

z−σ σ−2σ 2σ−3σ 3σ

Normal PDF

within 1 · σ ≈ 68%

within 2 · σ ≈ 95%

within 3 · σ ≈ 99%
68%

95%

99%

1. P(−1 < Z < 1) is 
a) .025 b) .16 c) .68 d) .84 e) .95 

2. P(Z > 2) 
a) .025 b) .16 c) .68 d) .84 e) .95 
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Central Limit Theorem
 

Setting: X1, X2, . . . i.i.d. with mean µ and standard dev. σ. 

For each n: 

1 
X n = (X1 + X2 + . . . + Xn) 

n 
Sn = X1 + X2 + . . . + Xn. 

Conclusion: For large n: 

σ2 

X n ≈ N µ, 
n  

Sn ≈ N nµ, nσ2


Standardized Sn or X n ≈ N(0, 1)
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CLT: pictures 
Standardized average of n i.i.d. uniform random variables 
with n = 1, 2, 4, 12. 
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CLT: pictures 2 
The standardized average of n i.i.d. exponential random 
variables with n = 1, 2, 8, 64. 
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CLT: pictures 3 
The standardized average of n i.i.d. Bernoulli(.5) random 
variables with n = 1, 2, 12, 64. 
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CLT: pictures 4 
The (non-standardized) average of n Bernoulli(.5) random 
variables, with n = 4, 12, 64. (Spikier.) 
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Table Question: Sampling from the standard normal 
distribution 

As a table, produce a single random sample from (an approximate)
 
standard normal distribution.
 

The table is allowed nine rolls of the 10-sided die.
 

Note: µ = 5.5 and σ2 = 8.25 for a single 10-sided die.
 

Hint: CLT is about averages.
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Board Question: CLT 

1. Carefully write the statement of the central limit 
theorem. 

2. To head the newly formed US Dept. of Statistics, 
suppose that 50% of the population supports Erika, 25% 
supports Ruthi, and the remaining 25% is split evenly 
between Peter, Jon and Jerry. 

A poll asks 400 random people who they support. What is 
the probability that at least 55% of those polled prefer 
Erika? 

3. What is the probability that less than 20% of those 
polled prefer Ruthi? 
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