
Joint Distributions, Independence
 
Covariance and Correlation
 

18.05 Spring 2014
 
Jeremy Orloff and Jonathan Bloom
 

X\Y 1 2 3 4 5 6

1 1/36 1/36 1/36 1/36 1/36 1/36

2 1/36 1/36 1/36 1/36 1/36 1/36

3 1/36 1/36 1/36 1/36 1/36 1/36

4 1/36 1/36 1/36 1/36 1/36 1/36

5 1/36 1/36 1/36 1/36 1/36 1/36

6 1/36 1/36 1/36 1/36 1/36 1/36



� � 

Central Limit Theorem
 

Setting: X1, X2, . . . i.i.d. with mean µ and standard dev. σ. 

For each n: 

1 
X n = (X1 + X2 + . . . + Xn) 

n 
Sn = X1 + X2 + . . . + Xn. 

Conclusion: For large n: 

σ2 

X n ≈ N µ, 
n  

Sn ≈ N nµ, nσ2


Standardized Sn or X n ≈ N(0, 1)
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Board Question: CLT
 

1. Carefully write the statement of the central limit theorem. 

2. To head the newly formed US Dept. of Statistics, suppose that 
50% of the population supports Erika, 25% supports Ruthi, and the 
remaining 25% is split evenly between Peter, Jon and Jerry. 

A poll asks 400 random people who they support. What is the 
probability that at least 55% of those polled prefer Erika? 

3. (Not for class. Solution will be on posted slides.)
 
An accountant rounds to the nearest dollar. We’ll assume the error in
 
rounding is uniform on [-.5, .5]. Estimate the probability that the
 
total error in 300 entries is more than $5.
 

Solution on next page 
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Solution 2
 
answer: 2. Let E be the number polled who support Erika.
 
The question asks for the probability E > .55 · 400 = 220.
 

E (E) = 400(.5) = 200 and E = 400(.5)(1 − .5) = 100 ⇒ σE = 10.
 σ2 

Because E is the sum of 400 Bernoulli(.5) variables the CLT says it is 
approximately normal and standardizing gives 

E − 200 ≈ Z and P(E > 220) ≈ P(Z > 2) ≈ .025 
10 

3. Let Xj be the error in the j th entry, so, Xj ∼ U(−.5, .5).
 

We have E (Xj ) = 0 and Var(Xj ) = 1/12.
 

The total error S = X1 + . . . + X300 has E (S) = 0,
 
Var(S) = 300/12 = 25, and σS = 5. 

Standardizing we get, by the CLT, S/5 is approximately standard normal.
 
That is, S/5 ≈ Z .
 

So P(S < 5 or S > 5) ≈ P(Z < 1 or Z > 1) ≈
 .32 . 
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Joint Distributions
 

X and Y are jointly distributed random variables. 

Discrete: Probability mass function (pmf): 

p(xi , yj ) 

Continuous: probability density function (pdf): 

f (x , y) 

Both: cumulative distribution function (cdf): 

F (x , y) = P(X ≤ x , Y ≤ y) 
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Discrete joint pmf: example 1
 

Roll two dice: X = # on first die, Y = # on second die
 

X takes values in 1, 2, . . . , 6, Y takes values in 1, 2, . . . , 6
 

Joint probability table: 

X\Y 1 2 3 4 5 6

1 1/36 1/36 1/36 1/36 1/36 1/36

2 1/36 1/36 1/36 1/36 1/36 1/36

3 1/36 1/36 1/36 1/36 1/36 1/36

4 1/36 1/36 1/36 1/36 1/36 1/36

5 1/36 1/36 1/36 1/36 1/36 1/36

6 1/36 1/36 1/36 1/36 1/36 1/36

pmf: p(i , j) = 1/36 for any i and j between 1 and 6.
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Discrete joint pmf: example 2
 

Roll two dice: X = # on first die, T = total on both dice 

X\T 2 3 4 5 6 7 8 9 10 11 12

1 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0 0

2 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0

3 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0

4 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0

5 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0

6 0 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36
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Continuous joint distributions 
X takes values in [a, b], Y takes values in [c , d ] 
(X , Y ) takes values in [a, b] × [c , d ]. 
Joint probability density function (pdf) f (x , y) 

f (x , y) dx dy is the probability of being in the small square. 

dx

dy

Prob. = f(x, y) dx dy

x

y

a b

c

d
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Properties of the joint pmf and pdf 
Discrete case: probability mass function (pmf) 
1. 0 ≤ p(xi , yj ) ≤ 1 

2. Total probability is 1. 

n mmm 
p(xi , yj ) = 1 

i=1 j=1 

Continuous case: probability density function (pdf) 
1. 0 ≤ f (x , y) 

2. Total probability is 1. � d � b 

f (x , y) dx dy = 1 
c a 

Note: f (x , y) can be greater than 1: it is a density not a probability.
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answer: We can describe A as a set of (X ,Y ) pairs:

A = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (4, 6)}.

Or we can visualize it by shading the table:

P(A) = sum of probabilities in shaded cells = 10/36.

Example: discrete events 
Roll two dice: X = # on first die, Y = # on second die.
 

Consider the event: A = ‘Y − X ≥ 2’
 

Describe the event A and find its probability.
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Example: discrete events 
Roll two dice: X = # on first die, Y = # on second die.
 

Consider the event: A = ‘Y − X ≥ 2’
 

Describe the event A and find its probability.
 

answer: We can describe A as a set of (X , Y ) pairs:
 

A = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (4, 6)}. 

Or we can visualize it by shading the table: 

X\Y 1 2 3 4 5 6

1 1/36 1/36 1/36 1/36 1/36 1/36

2 1/36 1/36 1/36 1/36 1/36 1/36

3 1/36 1/36 1/36 1/36 1/36 1/36

4 1/36 1/36 1/36 1/36 1/36 1/36

5 1/36 1/36 1/36 1/36 1/36 1/36

6 1/36 1/36 1/36 1/36 1/36 1/36

P(A) = sum of probabilities in shaded cells = 10/36.
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answer:

The event takes up half the square. Since the density is uniform this
is half the probability. That is, P(X > Y ) = .5

Example: continuous events 
Suppose (X , Y ) takes values in [0, 1] × [0, 1].
 

Uniform density f (x , y) = 1.
 

Visualize the event ‘X > Y ’ and find its probability.
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Example: continuous events 
Suppose (X , Y ) takes values in [0, 1] × [0, 1].
 

Uniform density f (x , y) = 1.
 

Visualize the event ‘X > Y ’ and find its probability.
 
answer: 

x

y

1

1

‘X > Y ’

The event takes up half the square. Since the density is uniform this 
is half the probability. That is, P(X > Y ) = .5 
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� �
Cumulative distribution function
 

y x 

F (x , y) = P(X ≤ x , Y ≤ y) = f (u, v) du dv . 
c a 

∂2F 
f (x , y) = (x , y). 

∂x∂y 

Properties 

1.	 F (x , y) is non-decreasing. That is, as x or y increases F (x , y) 
increases or remains constant. 

2.	 F (x , y) = 0 at the lower left of its range. 
If the lower left is (−∞, −∞) then this means 

lim F (x , y) = 0. 
(x ,y)→(−∞,−∞) 

3. F (x , y) = 1 at the upper right of its range.
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Marginal pmf
 

Roll two dice: X = # on first die, T = total on both dice. 

The marginal pmf of X is found by summing the rows. The marginal 
pmf of T is found by summing the columns 

X\T 2 3 4 5 6 7 8 9 10 11 12 p(xi)

1 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0 0 1/6

2 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0 1/6

3 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 1/6

4 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 1/6

5 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 1/6

6 0 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 1/6

p(tj) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 1
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Marginal pdf
 

Example. Suppose X and Y take values on the square 
3[0, 1] × [1, 2] with joint pdf f (x , y) = 8 x y .3 

The marginal pdf fX (x) is found by integrating out the y . 
Likewise for fY (y). 
answer: 

2 
3 2 3fX (x) = 

8 
x 3y dy =

 
4 
x y 

 2 

= 4x 
3 31 1 1 8 2 

 1 
24 1fY (y) = x 3y dx = x y = y . 

3 3 30 0 
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Board question
 

Suppose X and Y are random variables and 

(X , Y ) takes values in [0, 1] × [0, 1].
 
3 2
the pdf is (x + y 2). 
2

1. Show f (x , y) is a valid pdf. 

2. Visualize the event A = ‘X > .3 and Y > .5’. Find its probability. 

3. Find the cdf F (x , y). 

4. Find the marginal pdf fX (x). Use this to find P(X < .5). 

5. Use the cdf F (x , y) to find the marginal cdf FX (x) and P(X < .5). 

6. See next slide 
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Board question continued
 

6. (New scenario) From the following table compute F (3.5, 4).
 

X\Y 1 2 3 4 5 6

1 1/36 1/36 1/36 1/36 1/36 1/36

2 1/36 1/36 1/36 1/36 1/36 1/36

3 1/36 1/36 1/36 1/36 1/36 1/36

4 1/36 1/36 1/36 1/36 1/36 1/36

5 1/36 1/36 1/36 1/36 1/36 1/36

6 1/36 1/36 1/36 1/36 1/36 1/36

answer: See next slide
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Solution
 
answer: 1. Validity: Clearly f (x , y) is positive. Next we must show that 
total probability = 1: 

1 1 1 1 13 1 3 1 32 3 2(x + y 2) dx dy = x + xy dy = + y 2 dy = 1. 
2 2 2 2 20 0 0 0 0 

2. Here’s the visualization 

x

y

1.3

1

.5

A

The pdf is not constant so we must compute an integral 

1 1 1 1 
2
 1 3x 

P(A) = 4xy dy dx = 2xy 
.5 dx = dx = 

2 .3 .5 .3 .3 
0.525 .
 

(continued)
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Solutions 3, 4, 5 
3. 

y x 3 3x y xy2F (x , y) = 
3
(u + v 2) du dv = + . 

2 3 30 0 

4. 
11 3 3 y3 3 12 2 2fX (x) = (x + y 2) dy = x y + = x + 

2 2 2 2 20 0 

.5 .5 .53 1 1 1 5 
P(X < .5) = fX (x) dx = x 2 + dx = x 3 + x = . 

2 2 2 2 160 0 0 

5. To find the marginal cdf FX (x) we simply take y to be the top of the 
y -range and evalute F : 

1 
FX (x) = F (x , 1) = (x 3 + x). 

2

1 1 1 5 
Therefore P(X < .5) = F (.5) = ( + ) = . 

2 8 2 16 
6. On next slide 
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Solution 6
 

6. F (3.5, 4) = P(X ≤ 3.5, Y ≤ 4).
 

X\Y 1 2 3 4 5 6

1 1/36 1/36 1/36 1/36 1/36 1/36

2 1/36 1/36 1/36 1/36 1/36 1/36

3 1/36 1/36 1/36 1/36 1/36 1/36

4 1/36 1/36 1/36 1/36 1/36 1/36

5 1/36 1/36 1/36 1/36 1/36 1/36

6 1/36 1/36 1/36 1/36 1/36 1/36

Add the probability in the shaded squares: F (3.5, 4) = 12/36 = 1/3.
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Independence 

Events A and B are independent if 

P(A ∩ B) = P(A)P(B). 

Random variables X and Y are independent if 

F (x , y) = FX (x)FY (y). 

Discrete random variables X and Y are independent if 

p(xi , yj ) = pX (xi )pY (yj ). 

Continuous random variables X and Y are independent if 

f (x , y) = fX (x)fY (y). 
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Concept question: independence I 
Roll two dice: X = value on first, Y = value on second 

X\Y 1 2 3 4 5 6 p(xi)

1 1/36 1/36 1/36 1/36 1/36 1/36 1/6

2 1/36 1/36 1/36 1/36 1/36 1/36 1/6

3 1/36 1/36 1/36 1/36 1/36 1/36 1/6

4 1/36 1/36 1/36 1/36 1/36 1/36 1/6

5 1/36 1/36 1/36 1/36 1/36 1/36 1/6

6 1/36 1/36 1/36 1/36 1/36 1/36 1/6

p(yj) 1/6 1/6 1/6 1/6 1/6 1/6 1

Are X and Y independent? 1. Yes 2. No 

answer: 1. Yes. Every cell probability is the product of the marginal 
probabilities. 
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Concept question: independence II 

Roll two dice: X = value on first, T = sum 

X\T 2 3 4 5 6 7 8 9 10 11 12 p(xi)

1 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0 0 1/6

2 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 0 1/6

3 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 0 1/6

4 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 0 1/6

5 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 0 1/6

6 0 0 0 0 0 1/36 1/36 1/36 1/36 1/36 1/36 1/6

p(yj) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 1

Are X and Y independent? 1. Yes 2. No 

answer: 2. No. The cells with probability zero are clearly not the product 
of the marginal probabilities. 
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Concept Question 

Among the following pdf’s which are independent? (Each of the 

ranges is a rectangle chosen so that f (x , y) dx dy = 1.) 

i) f (x , y) = 4x2y 3 . 

ii) f (x , y) = 1
2 (x

3y + xy 3). 
−3x−2yiii) f (x , y) = 6e


Put a 1 for independent and a 0 for not-independent.
 

(a) 111 (b) 110 (c) 101 (d) 100 

(e) 011 (f) 010 (g) 001 (h) 000 

answer: (c). Explanation on next slide. 
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Solution
 

(i) Independent. The variables can be separated: the marginal densities 

are fX (x) = ax2 and fY (y) = by3 for some constants a and b with ab = 4. 

(ii) Not independent. X and Y are not independent because there is no 
way to factor f (x , y) into a product fX (x)fY (y). 

(iii) Independent. The variables can be separated: the marginal densities 
−3x −2yare fX (x) = ae and fY (y) = be for some constants a and b with 

ab = 6. 
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Covariance
 

Measures the degree to which two random variables vary together, 
e.g. height and weight of people. 

X , Y random variables with means µX and µY 

Cov(X , Y ) = E ((X − µX )(Y − µY )). 
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Properties of covariance
 

Properties 

1.	 Cov(aX + b, cY + d) = acCov(X , Y ) for constants a, b, c , d . 

2.	 Cov(X1 + X2, Y ) = Cov(X1, Y ) + Cov(X2, Y ). 

3.	 Cov(X , X ) = Var(X ) 

4.	 Cov(X , Y ) = E (XY ) − µX µY . 

5.	 If X and Y are independent then Cov(X , Y ) = 0. 

6.	 Warning: The converse is not true, if covariance is 0 the variables 
might not be independent. 
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Key point: covariance measures the linear relationship between X and
Y . It can completely miss a quadratic or higher order relationship.

Concept question
 
Suppose we have the following joint probability table.
 

Y \X -1 0 1 p(yj)

0 0 1/2 0 1/2

1 1/4 0 1/4 1/2

p(xi) 1/4 1/2 1/4 1

We compute the covariance using the following steps. 
1. E (X ) = 0 E (Y ) = 1/2 
2. E (XY ) = −1/4 + 1/4 = 0 
3. Therefore Cov(X , Y ) = E (XY ) − E (X )E (Y ) = 0. 

Because the covariance is 0 we know that X and Y are independent 

1. True 2. False 
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Y . It can completely miss a quadratic or higher order relationship. 
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Board question: computing covariance
 

Flip a fair coin 3 times.
 

Let X = number of heads in the first 2 flips
 

Let Y = number of heads on the last 2 flips.
 

Compute Cov(X , Y ),
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Solution
 

X\Y 0 1 2 p(xi)

0 1/8 1/8 0 1/4

1 1/8 2/8 1/8 1/2

2 0 1/8 1/8 1/4

p(yj) 1/4 1/2 1/4 1

From the marginals compute E (X ) = 1 = E (Y ). By the table compute 

2 1 1 1 5 
E (XY ) = 1 · + 2 + 2 + 4 = . 

8 8 8 8 4 

1 
So Cov(X , Y ) = 54 − 1 = . 

4 

A more conceptual solution is on the next slide. 
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Alternative Solution
 
Use the properties of covariance.
 
Xi = the number of heads on the i th flip. (So Xi ∼ Bernoulli(.5).)
 

X = X1 + X2 and Y = X2 + X3. 

Know E (Xi ) = 1/2 and Var(Xi ) = 1/4. Therefore µX = 1 = µY . 
Use Property 2 (linearity) of covariance 

Cov(X , Y ) = Cov(X1 + X2, X2 + X3) 

= Cov(X1, X2) + Cov(X1, X3) + Cov(X2, X2) + Cov(X2, X3). 

Since the different tosses are independent we know 

Cov(X1, X2) = Cov(X1, X3) = Cov(X2, X3) = 0. 

Looking at the expression for Cov(X , Y ) there is only one non-zero term 

1 
Cov(X , Y ) = Cov(X2, X2) = Var(X2) = . 

4 
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Stop and rest
 

We’ll stop here and finish the remainder of these slides in 
the next class. 
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Correlation
 

Like covariance, but removes scale.
 
The correlation coefficient between X and Y is defined by
 

Cov(X , Y )
Cor(X , Y ) = ρ = . 

σX σY 

Properties: 
1. ρ is the covariance of the standardized versions of X 
and Y . 
2. ρ is dimensionless (it’s a ratio). 
3. −1 ≤ ρ ≤ 1. ρ = 1 if and only if Y = aX + b with 
a > 0 and ρ = −1 if and only if Y = aX + b with a < 0. 
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Real-life correlations
 

Over time, amount of Ice cream consumption is 
correlated with number of pool drownings. 

In 1685 (and today) being a student is the most 
dangerous profession. 

In 90% of bar fights ending in a death the person who 
started the fight died. 

Hormone replacement therapy (HRT) is correlated 
with a lower rate of coronary heart disease (CHD). 

Discussion is on the next slides. 
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Real-life correlations discussion
 

Ice cream does not cause drownings. Both are correlated with 
summer weather. 

In a study in 1685 of the ages and professions of deceased men, it was 
found that the profession with the lowest average age of death was 
“student.” But, being a student does not cause you to die at an early 
age. Being a student means you are young. This is what makes the 
average of those that die so low. 

A study of fights in bars in which someone was killed found that, in 
90% of the cases, the person who started the fight was the one who 
died. 

Of course, it’s the person who survived telling the story. 

Continued on next slide 
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(continued)
 

In a widely studied example, numerous epidemiological studies showed 
that women who were taking combined hormone replacement therapy 
(HRT) also had a lower-than-average incidence of coronary heart 
disease (CHD), leading doctors to propose that HRT was protective 
against CHD. But randomized controlled trials showed that HRT 
caused a small but statistically significant increase in risk of CHD. 
Re-analysis of the data from the epidemiological studies showed that 
women undertaking HRT were more likely to be from higher 
socio-economic groups (ABC1), with better-than-average diet and 
exercise regimens. The use of HRT and decreased incidence of 
coronary heart disease were coincident effects of a common cause (i.e. 
the benefits associated with a higher socioeconomic status), rather 
than cause and effect, as had been supposed. 
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Correlation is not causation 

Edward Tufte: ”Empirically observed covariation is a 
necessary but not sufficient condition for causality.” 
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Overlapping sums of uniform random variables
 

We made two random variables X and Y from overlapping sums of 
uniform random variables 

For example: 

X = X1 + X2 + X3 + X4 + X5 

Y = X3 + X4 + X5 + X6 + X7 

These are sums of 5 of the Xi with 3 in common. 

If we sum r of the Xi with s in common we name it (r , s). 

Below are a series of scatterplots produced using R. 
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Scatter plots
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Concept question
 

Toss a fair coin 2n + 1 times. Let X be the number of 
heads on the first n + 1 tosses and Y the number on the 
last n + 1 tosses. 

If n = 1000 then Cov(X , Y ) is: 

(a) 0 (b) 1/4 (c) 1/2 (d) 1 

(e) More than 1 (f) tiny but not 0 

answer: 2. 1/4. This is computed in the answer to the next table 
question. 
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Board question 
Toss a fair coin 2n + 1 times. Let X be the number of 
heads on the first n + 1 tosses and Y the number on the 
last n + 1 tosses. 

Compute Cov(X , Y ) and Cor(X , Y ). 
As usual let Xi = the number of heads on the i th flip, i.e. 0 or 1. Then 

n+1 2n+1m m 
X = Xi , Y = Xi 

1 n+1 

X is the sum of n + 1 independent Bernoulli(1/2) random variables, so 

n + 1 n + 1 
µX = E (X ) = , and Var(X ) = . 

2 4 

n + 1 n + 1 
Likewise, µY = E (Y ) = , and Var(Y ) = . 

2 4 
Continued on next slide.
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Solution continued 
Now, 

n+1 2n+1 n+1 2n+1m m m m 
Cov(X , Y ) = Cov Xi Xj = Cov(Xi Xj ). 

1 n+1 i=1 j=n+1 

Because the Xi are independent the only non-zero term in the above sum 
1 

is Cov(Xn+1Xn+1) = Var(Xn+1) = Therefore, 
4 

1 
Cov(X , Y ) = . 

4 

We get the correlation by dividing by the standard deviations. 

Cov(X , Y ) 1/4 1 
Cor(X , Y ) = = = . 

σX σY (n + 1)/4 n + 1 

This makes sense: as n increases the correlation should decrease since the 
contribution of the one flip they have in common becomes less important. 
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