Joint Distributions, Independence
 Covariance and Correlation

 18.05 Spring 2014Jeremy Orloff and Jonathan Bloom

$X \backslash Y$	1	2	3	4	5	6
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

Central Limit Theorem

Setting: X_{1}, X_{2}, \ldots i.i.d. with mean μ and standard dev. σ. For each n :

$$
\begin{aligned}
\bar{X}_{n} & =\frac{1}{n}\left(X_{1}+X_{2}+\ldots+X_{n}\right) \\
S_{n} & =X_{1}+X_{2}+\ldots+X_{n} .
\end{aligned}
$$

Conclusion: For large n :

$$
\begin{aligned}
& \bar{X}_{n} \approx \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{n}\right) \\
& S_{n} \approx \mathrm{~N}\left(n \mu, n \sigma^{2}\right)
\end{aligned}
$$

Standardized S_{n} or $\bar{X}_{n} \approx \mathrm{~N}(0,1)$

Board Question: CLT

1. Carefully write the statement of the central limit theorem.
2. To head the newly formed US Dept. of Statistics, suppose that 50% of the population supports Erika, 25\% supports Ruthi, and the remaining 25% is split evenly between Peter, Jon and Jerry.
A poll asks 400 random people who they support. What is the probability that at least 55% of those polled prefer Erika?
3. (Not for class. Solution will be on posted slides.)

An accountant rounds to the nearest dollar. We'll assume the error in rounding is uniform on [-.5, .5]. Estimate the probability that the total error in 300 entries is more than $\$ 5$.

Solution on next page

Solution 2

answer: 2. Let \mathcal{E} be the number polled who support Erika.
The question asks for the probability $\mathcal{E}>.55 \cdot 400=220$.
$E(\mathcal{E})=400(.5)=200$ and $\sigma_{\mathcal{E}}^{2}=400(.5)(1-.5)=100 \Rightarrow \sigma_{\mathcal{E}}=10$.
Because \mathcal{E} is the sum of 400 Bernoulli(.5) variables the CLT says it is approximately normal and standardizing gives

$$
\frac{\mathcal{E}-200}{10} \approx Z \quad \text { and } \quad P(\mathcal{E}>220) \approx P(Z>2) \approx .025
$$

3. Let X_{j} be the error in the $j^{\text {th }}$ entry, so, $X_{j} \sim U(-.5, .5)$.

We have $E\left(X_{j}\right)=0$ and $\operatorname{Var}\left(X_{j}\right)=1 / 12$.
The total error $S=X_{1}+\ldots+X_{300}$ has $E(S)=0$, $\operatorname{Var}(S)=300 / 12=25$, and $\sigma_{S}=5$.
Standardizing we get, by the CLT, S/5 is approximately standard normal. That is, $S / 5 \approx Z$.
So $P(S<5$ or $S>5) \approx P(Z<1$ or $Z>1) \approx .32$.

Joint Distributions

X and Y are jointly distributed random variables.
Discrete: Probability mass function (pmf):

$$
p\left(x_{i}, y_{j}\right)
$$

Continuous: probability density function (pdf):

$$
f(x, y)
$$

Both: cumulative distribution function (cdf):

$$
F(x, y)=P(X \leq x, Y \leq y)
$$

Discrete joint pmf: example 1
Roll two dice: $X=\#$ on first die, $Y=\#$ on second die
X takes values in $1,2, \ldots, 6, \quad Y$ takes values in $1,2, \ldots, 6$
Joint probability table:

$X \backslash Y$	1	2	3	4	5	6
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

pmf: $p(i, j)=1 / 36$ for any i and j between 1 and 6 .

Discrete joint pmf: example 2

Roll two dice: $X=\#$ on first die, $T=$ total on both dice

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0	0
2	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0
3	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0
4	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0
5	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0
6	0	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

Continuous joint distributions

- X takes values in $[a, b], \quad Y$ takes values in $[c, d]$
- (X, Y) takes values in $[a, b] \times[c, d]$.
- Joint probability density function (pdf) $f(x, y)$
$f(x, y) d x d y$ is the probability of being in the small square.

Properties of the joint pmf and pdf

Discrete case: probability mass function (pmf)

1. $0 \leq p\left(x_{i}, y_{j}\right) \leq 1$
2. Total probability is 1 .

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} p\left(x_{i}, y_{j}\right)=1
$$

Continuous case: probability density function (pdf)

1. $0 \leq f(x, y)$
2. Total probability is 1 .

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=1
$$

Note: $f(x, y)$ can be greater than 1: it is a density not a probability.

Example: discrete events

Roll two dice: $X=\#$ on first die, $Y=\#$ on second die.
Consider the event: $A=' Y-X \geq 2$ '
Describe the event A and find its probability.

Example: discrete events

Roll two dice: $X=\#$ on first die, $Y=\#$ on second die.
Consider the event: $A=' Y-X \geq 2$ '
Describe the event A and find its probability. answer: We can describe A as a set of (X, Y) pairs:

$$
A=\{(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,6)\} .
$$

Or we can visualize it by shading the table:

$X \backslash Y$	1	2	3	4	5	6
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

$P(A)=$ sum of probabilities in shaded cells $=10 / 36$.

Example: continuous events

Suppose (X, Y) takes values in $[0,1] \times[0,1]$.
Uniform density $f(x, y)=1$.
Visualize the event ' $X>Y$ ' and find its probability.

Example: continuous events

Suppose (X, Y) takes values in $[0,1] \times[0,1]$.
Uniform density $f(x, y)=1$.
Visualize the event ' $X>Y$ ' and find its probability. answer:

The event takes up half the square. Since the density is uniform this is half the probability. That is, $P(X>Y)=.5$

Cumulative distribution function

$$
\begin{gathered}
F(x, y)=P(X \leq x, Y \leq y)=\int_{c}^{y} \int_{a}^{x} f(u, v) d u d v \\
f(x, y)=\frac{\partial^{2} F}{\partial x \partial y}(x, y)
\end{gathered}
$$

Properties

1. $F(x, y)$ is non-decreasing. That is, as x or y increases $F(x, y)$ increases or remains constant.
2. $F(x, y)=0$ at the lower left of its range.

If the lower left is $(-\infty,-\infty)$ then this means

$$
\lim _{(x, y) \rightarrow(-\infty,-\infty)} F(x, y)=0
$$

3. $F(x, y)=1$ at the upper right of its range.

Marginal pmf

Roll two dice: $X=\#$ on first die, $T=$ total on both dice.
The marginal pmf of X is found by summing the rows. The marginal pmf of T is found by summing the columns

| $X \backslash T$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$p\left(x_{i}\right)$

Marginal pdf

Example. Suppose X and Y take values on the square $[0,1] \times[1,2]$ with joint pdf $f(x, y)=\frac{8}{3} x^{3} y$.
The marginal pdf $f_{X}(x)$ is found by integrating out the y.
Likewise for $f_{Y}(y)$.
answer:

$$
\begin{aligned}
& f_{X}(x)=\int_{1}^{2} \frac{8}{3} x^{3} y d y=\left[\frac{4}{3} x^{3} y^{2}\right]_{1}^{2}=4 x^{3} \\
& f_{Y}(y)=\int_{0}^{1} \frac{8}{3} x^{3} y d x=\left[\frac{2}{3} x^{4} y^{1}\right]_{0}^{1}=\frac{2}{3} y
\end{aligned}
$$

Board question

Suppose X and Y are random variables and

- (X, Y) takes values in $[0,1] \times[0,1]$.
- the pdf is $\frac{3}{2}\left(x^{2}+y^{2}\right)$.

1. Show $f(x, y)$ is a valid pdf.
2. Visualize the event $A=' X>.3$ and $Y>.5$ '. Find its probability.
3. Find the cdf $F(x, y)$.
4. Find the marginal pdf $f_{X}(x)$. Use this to find $P(X<.5)$.
5. Use the cdf $F(x, y)$ to find the marginal $\operatorname{cdf} F_{X}(x)$ and $P(X<.5)$.
6. See next slide

Board question continued

6. (New scenario) From the following table compute $F(3.5,4)$.

$X \backslash Y$	1	2	3	4	5	6
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

answer: See next slide

Solution

answer: 1 . Validity: Clearly $f(x, y)$ is positive. Next we must show that total probability $=1$:
$\int_{0}^{1} \int_{0}^{1} \frac{3}{2}\left(x^{2}+y^{2}\right) d x d y=\int_{0}^{1}\left[\frac{1}{2} x^{3}+\frac{3}{2} x y^{2}\right]_{0}^{1} d y=\int_{0}^{1} \frac{1}{2}+\frac{3}{2} y^{2} d y=1$.
2. Here's the visualization

The pdf is not constant so we must compute an integral

$$
P(A)=\int_{.3}^{1} \int_{.5}^{1} 4 x y d y d x=\int_{.3}^{1}\left[2 x y^{2}\right]_{.5}^{1} d x=\int_{.3}^{1} \frac{3 x}{2} d x=0.525 .
$$

Solutions 3, 4, 5

3.

$$
F(x, y)=\int_{0}^{y} \int_{0}^{x} \frac{3}{2}\left(u^{2}+v^{2}\right) d u d v=\frac{x^{3} y}{3}+\frac{x y^{3}}{3}
$$

4.

$$
\begin{gathered}
f_{X}(x)=\int_{0}^{1} \frac{3}{2}\left(x^{2}+y^{2}\right) d y=\left[\frac{3}{2} x^{2} y+\frac{y^{3}}{2}\right]_{0}^{1}=\frac{3}{2} x^{2}+\frac{1}{2} \\
P(X<.5)=\int_{0}^{.5} f_{X}(x) d x=\int_{0}^{.5} \frac{3}{2} x^{2}+\frac{1}{2} d x=\left[\frac{1}{2} x^{3}+\frac{1}{2} x\right]_{0}^{.5}=\frac{5}{16} .
\end{gathered}
$$

5. To find the marginal $\operatorname{cdf} F_{X}(x)$ we simply take y to be the top of the y-range and evalute F :

$$
F_{X}(x)=F(x, 1)=\frac{1}{2}\left(x^{3}+x\right)
$$

Therefore $P(X<.5)=F(.5)=\frac{1}{2}\left(\frac{1}{8}+\frac{1}{2}\right)=\frac{5}{16}$.
6. On next slide

Solution 6

6. $F(3.5,4)=P(X \leq 3.5, Y \leq 4)$.

$X \backslash Y$	1	2	3	4	5	6
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

Add the probability in the shaded squares: $F(3 \cdot 5,4)=12 / 36=1 / 3$.

Independence

Events A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

Random variables X and Y are independent if

$$
F(x, y)=F_{X}(x) F_{Y}(y)
$$

Discrete random variables X and Y are independent if

$$
p\left(x_{i}, y_{j}\right)=p_{X}\left(x_{i}\right) p_{Y}\left(y_{j}\right)
$$

Continuous random variables X and Y are independent if

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Concept question: independence I

Roll two dice: $\quad X=$ value on first, $\quad Y=$ value on second

$X \backslash Y$	1	2	3	4	5	6	$p\left(x_{i}\right)$
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
$p\left(y_{j}\right)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	1

Are X and Y independent?

1. Yes
2. No
answer: 1. Yes. Every cell probability is the product of the marginal probabilities.

Concept question: independence II

Roll two dice: $\quad X=$ value on first, $\quad T=$ sum

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
$p\left(x_{i}\right)$											
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0	0
$1 / 6$											
2	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0
$1 / 6$											
3	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0
$1 / 6$											
4	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0
$1 / 6$											
5	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0
6	0	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
$p\left(y_{j}\right)$	$1 / 36$	$2 / 36$	$3 / 36$	$4 / 36$	$5 / 36$	$6 / 36$	$5 / 36$	$4 / 36$	$3 / 36$	$2 / 36$	$1 / 36$

Are X and Y independent? 1. Yes 2. No
answer: 2. No. The cells with probability zero are clearly not the product of the marginal probabilities.

Concept Question

Among the following pdf's which are independent? (Each of the ranges is a rectangle chosen so that $\iint f(x, y) d x d y=1$.)
i) $f(x, y)=4 x^{2} y^{3}$.
ii) $f(x, y)=\frac{1}{2}\left(x^{3} y+x y^{3}\right)$.
iii) $f(x, y)=6 e^{-3 x-2 y}$

Put a 1 for independent and a 0 for not-independent.
(a) 111
(b) 110
(c) 101
(d) 100
(e) 011
(f) 010
(g) 001
(h) 000
answer: (c). Explanation on next slide.

Solution

(i) Independent. The variables can be separated: the marginal densities are $f_{X}(x)=a x^{2}$ and $f_{Y}(y)=b y^{3}$ for some constants a and b with $a b=4$.
(ii) Not independent. X and Y are not independent because there is no way to factor $f(x, y)$ into a product $f_{X}(x) f_{Y}(y)$.
(iii) Independent. The variables can be separated: the marginal densities are $f_{X}(x)=a \mathrm{e}^{-3 x}$ and $f_{Y}(y)=b \mathrm{e}^{-2 y}$ for some constants a and b with $a b=6$.

Covariance

Measures the degree to which two random variables vary together, e.g. height and weight of people.
X, Y random variables with means μ_{X} and μ_{Y}

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right) .
$$

Properties of covariance

Properties

1. $\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$ for constants a, b, c, d.
2. $\operatorname{Cov}\left(X_{1}+X_{2}, Y\right)=\operatorname{Cov}\left(X_{1}, Y\right)+\operatorname{Cov}\left(X_{2}, Y\right)$.
3. $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$
4. $\operatorname{Cov}(X, Y)=E(X Y)-\mu_{X} \mu_{Y}$.
5. If X and Y are independent then $\operatorname{Cov}(X, Y)=0$.
6. Warning: The converse is not true, if covariance is 0 the variables might not be independent.

Concept question

Suppose we have the following joint probability table.

$Y \backslash X$	-1	0	1	$p\left(y_{j}\right)$
0	0	$1 / 2$	0	$1 / 2$
1	$1 / 4$	0	$1 / 4$	$1 / 2$
$p\left(x_{i}\right)$	$1 / 4$	$1 / 2$	$1 / 4$	1

We compute the covariance using the following steps.

1. $E(X)=0 \quad E(Y)=1 / 2$
2. $E(X Y)=-1 / 4+1 / 4=0$
3. Therefore $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=0$.

Because the covariance is 0 we know that X and Y are independent

\author{

1. True 2. False
}

Concept question

Suppose we have the following joint probability table.

$Y \backslash X$	-1	0	1	$p\left(y_{j}\right)$
0	0	$1 / 2$	0	$1 / 2$
1	$1 / 4$	0	$1 / 4$	$1 / 2$
$p\left(x_{i}\right)$	$1 / 4$	$1 / 2$	$1 / 4$	1

We compute the covariance using the following steps.

1. $E(X)=0 \quad E(Y)=1 / 2$
2. $E(X Y)=-1 / 4+1 / 4=0$
3. Therefore $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=0$.

Because the covariance is 0 we know that X and Y are independent

1. True 2. False

Key point: covariance measures the linear relationship between X and Y. It can completely miss a quadratic or higher order relationship.

Board question: computing covariance

Flip a fair coin 3 times.
Let $X=$ number of heads in the first 2 flips
Let $Y=$ number of heads on the last 2 flips.
Compute $\operatorname{Cov}(X, Y)$,

Solution

$X \backslash Y$	0	1	2	$p\left(x_{i}\right)$
0	$1 / 8$	$1 / 8$	0	$1 / 4$
1	$1 / 8$	$2 / 8$	$1 / 8$	$1 / 2$
2	0	$1 / 8$	$1 / 8$	$1 / 4$

From the marginals compute $E(X)=1=E(Y)$. By the table compute

$$
E(X Y)=1 \cdot \frac{2}{8}+2 \frac{1}{8}+2 \frac{1}{8}+4 \frac{1}{8}=\frac{5}{4}
$$

So $\operatorname{Cov}(X, Y)=\frac{5}{4}-1=\frac{1}{4}$.
A more conceptual solution is on the next slide.

Alternative Solution

Use the properties of covariance.
$X_{i}=$ the number of heads on the $i^{\text {th }}$ flip. (So $X_{i} \sim$ Bernoulli(.5).)

$$
X=X_{1}+X_{2} \quad \text { and } \quad Y=X_{2}+X_{3}
$$

Know $E\left(X_{i}\right)=1 / 2$ and $\operatorname{Var}\left(X_{i}\right)=1 / 4$. Therefore $\mu_{X}=1=\mu_{Y}$.
Use Property 2 (linearity) of covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\operatorname{Cov}\left(X_{1}+X_{2}, X_{2}+X_{3}\right) \\
& =\operatorname{Cov}\left(X_{1}, X_{2}\right)+\operatorname{Cov}\left(X_{1}, X_{3}\right)+\operatorname{Cov}\left(X_{2}, X_{2}\right)+\operatorname{Cov}\left(X_{2}, X_{3}\right)
\end{aligned}
$$

Since the different tosses are independent we know

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=\operatorname{Cov}\left(X_{1}, X_{3}\right)=\operatorname{Cov}\left(X_{2}, X_{3}\right)=0
$$

Looking at the expression for $\operatorname{Cov}(X, Y)$ there is only one non-zero term

$$
\operatorname{Cov}(X, Y)=\operatorname{Cov}\left(X_{2}, X_{2}\right)=\operatorname{Var}\left(X_{2}\right)=\frac{1}{4}
$$

Stop and rest

We'll stop here and finish the remainder of these slides in the next class.

Correlation

Like covariance, but removes scale.
The correlation coefficient between X and Y is defined by

$$
\operatorname{Cor}(X, Y)=\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Properties:

1. ρ is the covariance of the standardized versions of X and Y.
2. ρ is dimensionless (it's a ratio).
3. $-1 \leq \rho \leq 1 . \quad \rho=1$ if and only if $Y=a X+b$ with
$a>0$ and $\rho=-1$ if and only if $Y=a X+b$ with $a<0$.

Real-life correlations

- Over time, amount of Ice cream consumption is correlated with number of pool drownings.
- In 1685 (and today) being a student is the most dangerous profession.
- In 90% of bar fights ending in a death the person who started the fight died.
- Hormone replacement therapy (HRT) is correlated with a lower rate of coronary heart disease (CHD).

Discussion is on the next slides.

Real-life correlations discussion

- Ice cream does not cause drownings. Both are correlated with summer weather.
- In a study in 1685 of the ages and professions of deceased men, it was found that the profession with the lowest average age of death was "student." But, being a student does not cause you to die at an early age. Being a student means you are young. This is what makes the average of those that die so low.
- A study of fights in bars in which someone was killed found that, in 90% of the cases, the person who started the fight was the one who died.

Of course, it's the person who survived telling the story.

Continued on next slide

(continued)

- In a widely studied example, numerous epidemiological studies showed that women who were taking combined hormone replacement therapy (HRT) also had a lower-than-average incidence of coronary heart disease (CHD), leading doctors to propose that HRT was protective against CHD. But randomized controlled trials showed that HRT caused a small but statistically significant increase in risk of CHD. Re-analysis of the data from the epidemiological studies showed that women undertaking HRT were more likely to be from higher socio-economic groups (ABC1), with better-than-average diet and exercise regimens. The use of HRT and decreased incidence of coronary heart disease were coincident effects of a common cause (i.e. the benefits associated with a higher socioeconomic status), rather than cause and effect, as had been supposed.

Correlation is not causation

Edward Tufte: "Empirically observed covariation is a necessary but not sufficient condition for causality."

Overlapping sums of uniform random variables

We made two random variables X and Y from overlapping sums of uniform random variables

For example:

$$
\begin{aligned}
& X=X_{1}+X_{2}+X_{3}+X_{4}+X_{5} \\
& Y=X_{3}+X_{4}+X_{5}+X_{6}+X_{7}
\end{aligned}
$$

These are sums of 5 of the X_{i} with 3 in common.
If we sum r of the X_{i} with s in common we name it (r, s).
Below are a series of scatterplots produced using R .

Scatter plots

$(1,0)$ cor $=0.00$, sample_cor $=-0.07$

$(5,1)$ cor $=0.20$, sample_cor $=0.21$

$(2,1)$ cor $=0.50$, sample_cor $=0.48$

$(10,8)$ cor $=0.80$, sample_cor $=0.81$

Concept question

Toss a fair coin $2 n+1$ times. Let X be the number of heads on the first $n+1$ tosses and Y the number on the last $n+1$ tosses.

If $n=1000$ then $\operatorname{Cov}(X, Y)$ is:
(a) 0
(b) $1 / 4$
(c) $1 / 2$
(d) 1
(e) More than 1
(f) tiny but not 0
answer: 2. 1/4. This is computed in the answer to the next table question.

Board question

Toss a fair coin $2 n+1$ times. Let X be the number of heads on the first $n+1$ tosses and Y the number on the last $n+1$ tosses.

Compute $\operatorname{Cov}(X, Y)$ and $\operatorname{Cor}(X, Y)$.
As usual let $X_{i}=$ the number of heads on the $i^{\text {th }}$ flip, i.e. 0 or 1 . Then

$$
X=\sum_{1}^{n+1} X_{i}, \quad Y=\sum_{n+1}^{2 n+1} X_{i}
$$

X is the sum of $n+1$ independent Bernoulli(1/2) random variables, so

$$
\mu_{X}=E(X)=\frac{n+1}{2}, \quad \text { and } \quad \operatorname{Var}(X)=\frac{n+1}{4}
$$

Likewise, $\mu_{Y}=E(Y)=\frac{n+1}{2}$, and $\operatorname{Var}(Y)=\frac{n+1}{4}$.
Continued on next slide.

Solution continued

Now,

$$
\operatorname{Cov}(X, Y)=\operatorname{Cov}\left(\sum_{1}^{n+1} X_{i} \sum_{n+1}^{2 n+1} X_{j}\right)=\sum_{i=1}^{n+1} \sum_{j=n+1}^{2 n+1} \operatorname{Cov}\left(X_{i} X_{j}\right)
$$

Because the X_{i} are independent the only non-zero term in the above sum is $\operatorname{Cov}\left(X_{n+1} X_{n+1}\right)=\operatorname{Var}\left(X_{n+1}\right)=\frac{1}{4}$ Therefore,

$$
\operatorname{Cov}(X, Y)=\frac{1}{4}
$$

We get the correlation by dividing by the standard deviations.

$$
\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{1 / 4}{(n+1) / 4}=\frac{1}{n+1}
$$

This makes sense: as n increases the correlation should decrease since the contribution of the one flip they have in common becomes less important.

MIT OpenCourseWare
http://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

