Joint Distributions, Independence Covariance and Correlation 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom

$X \backslash Y$	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

Central Limit Theorem

Setting: X_1 , X_2 , ... i.i.d. with mean μ and standard dev. σ . For each *n*:

$$\overline{X}_n = \frac{1}{n}(X_1 + X_2 + \ldots + X_n)$$
$$S_n = X_1 + X_2 + \ldots + X_n.$$

Conclusion: For large *n*:

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
$$S_n \approx N\left(n\mu, n\sigma^2\right)$$

Standardized S_n or $\overline{X}_n \approx N(0,1)$

Board Question: CLT

1. Carefully write the statement of the central limit theorem.

2. To head the newly formed US Dept. of Statistics, suppose that 50% of the population supports Erika, 25% supports Ruthi, and the remaining 25% is split evenly between Peter, Jon and Jerry.

A poll asks 400 random people who they support. What is the probability that at least 55% of those polled prefer Erika?

3. (Not for class. Solution will be on posted slides.)

An accountant rounds to the nearest dollar. We'll assume the error in rounding is uniform on [-.5, .5]. Estimate the probability that the total error in 300 entries is more than \$5.

Solution on next page

Solution 2

<u>answer:</u> 2. Let \mathcal{E} be the number polled who support Erika. The question asks for the probability $\mathcal{E} > .55 \cdot 400 = 220$.

$$E(\mathcal{E}) = 400(.5) = 200$$
 and $\sigma_{\mathcal{E}}^2 = 400(.5)(1-.5) = 100 \Rightarrow \sigma_{\mathcal{E}} = 10.$

Because \mathcal{E} is the sum of 400 Bernoulli(.5) variables the CLT says it is approximately normal and standardizing gives

$$rac{\mathcal{E}-200}{10}pprox Z$$
 and $P(\mathcal{E}>220)pprox P(Z>2)pprox .025$

3. Let X_j be the error in the j^{th} entry, so, $X_j \sim U(-.5, .5)$. We have $E(X_j) = 0$ and $\text{Var}(X_j) = 1/12$. The total error $S = X_1 + \ldots + X_{300}$ has E(S) = 0, Var(S) = 300/12 = 25, and $\sigma_S = 5$. Standardizing we get, by the CLT, S/5 is approximately standard normal. That is, $S/5 \approx Z$.

So
$$P(S < 5 \text{ or } S > 5) \approx P(Z < 1 \text{ or } Z > 1) \approx \boxed{.32}$$
.

Joint Distributions

X and Y are *jointly distributed* random variables. Discrete: Probability mass function (pmf):

 $p(x_i, y_j)$

Continuous: probability density function (pdf):

f(x, y)

Both: cumulative distribution function (cdf):

$$F(x,y) = P(X \le x, Y \le y)$$

Discrete joint pmf: example 1

Roll two dice: X = # on first die, Y = # on second die

X takes values in 1, 2, ..., 6, Y takes values in 1, 2, ..., 6

Joint probability table:

$X \backslash Y$	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

pmf: p(i,j) = 1/36 for any i and j between 1 and 6.

Discrete joint pmf: example 2

Roll two dice: X = # on first die, T = total on both dice

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0
2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0
3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0
4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0
5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0
6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36

Continuous joint distributions

- X takes values in [a, b], Y takes values in [c, d]
- (X, Y) takes values in $[a, b] \times [c, d]$.
- Joint probability **density** function (pdf) f(x, y)

f(x, y) dx dy is the probability of being in the small square.

Properties of the joint pmf and pdf

Discrete case: probability mass function (pmf) 1. $0 \le p(x_i, y_j) \le 1$

2. Total probability is 1.

$$\sum_{i=1}^n \sum_{j=1}^m p(x_i, y_j) = 1$$

Continuous case: probability density function (pdf) 1. $0 \le f(x, y)$

2. Total probability is 1.

$$\int_c^d \int_a^b f(x,y) \, dx \, dy = 1$$

Note: f(x, y) can be greater than 1: it is a density *not* a probability.

Example: discrete events

Roll two dice: X = # on first die, Y = # on second die.

Consider the event: $A = Y - X \ge 2$

Describe the event A and find its probability.

Example: discrete events

Roll two dice: X = # on first die, Y = # on second die.

Consider the event: $A = Y - X \ge 2$

Describe the event A and find its probability.

<u>answer</u>: We can describe A as a set of (X, Y) pairs:

 $A = \{(1,3), (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,5), (3,6), (4,6)\}.$

Or we can visualize it by shading the table:

$X \backslash Y$	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

P(A) = sum of probabilities in shaded cells = 10/36.

Example: continuous events

Suppose (X, Y) takes values in $[0, 1] \times [0, 1]$.

Uniform density f(x, y) = 1.

Visualize the event 'X > Y' and find its probability.

Example: continuous events

Suppose (X, Y) takes values in $[0, 1] \times [0, 1]$.

Uniform density f(x, y) = 1.

Visualize the event 'X > Y' and find its probability. **answer:**

The event takes up half the square. Since the density is uniform this is half the probability. That is, P(X > Y) = .5

Cumulative distribution function

$$F(x,y) = P(X \le x, Y \le y) = \int_c^y \int_a^x f(u,v) \, du \, dv.$$

$$f(x,y) = \frac{\partial^2 F}{\partial x \partial y}(x,y).$$

Properties

- 1. F(x, y) is non-decreasing. That is, as x or y increases F(x, y) increases or remains constant.
- 2. F(x, y) = 0 at the lower left of its range. If the lower left is $(-\infty, -\infty)$ then this means

$$\lim_{(x,y)\to(-\infty,-\infty)}F(x,y)=0.$$

3. F(x, y) = 1 at the upper right of its range.

Marginal pmf

Roll two dice: X = # on first die, T = total on both dice.

The marginal pmf of X is found by summing the rows. The marginal pmf of T is found by summing the columns

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12	$p(x_i)$
1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0	1/6
2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	1/6
3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	1/6
4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	1/6
5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	1/6
6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	1/6
$p(t_j)$	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36	1

Marginal pdf

Example. Suppose X and Y take values on the square $[0,1] \times [1,2]$ with joint pdf $f(x,y) = \frac{8}{3}x^3y$.

The marginal pdf $f_X(x)$ is found by *integrating out* the y. Likewise for $f_Y(y)$.

answer:

$$f_X(x) = \int_1^2 \frac{8}{3} x^3 y \, dy = \left[\frac{4}{3} x^3 y^2\right]_1^2 = \boxed{4x^3}$$

$$f_Y(y) = \int_0^1 \frac{8}{3} x^3 y \, dx = \left[\frac{2}{3} x^4 y^1\right]_0^1 = \boxed{\frac{2}{3}y}.$$

Board question

Suppose X and Y are random variables and

- (X, Y) takes values in $[0, 1] \times [0, 1]$.
- the pdf is $\frac{3}{2}(x^2 + y^2)$.
- 1. Show f(x, y) is a valid pdf.
- 2. Visualize the event A = X > .3 and Y > .5'. Find its probability.
- 3. Find the cdf F(x, y).
- 4. Find the marginal pdf $f_X(x)$. Use this to find P(X < .5).
- 5. Use the cdf F(x, y) to find the marginal cdf $F_X(x)$ and P(X < .5).
- 6. See next slide

Board question continued

6. (New scenario) From the following table compute F(3.5, 4).

$X \backslash Y$	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

answer: See next slide

Solution

answer: 1. Validity: Clearly f(x, y) is positive. Next we must show that total probability = 1:

$$\int_0^1 \int_0^1 \frac{3}{2} (x^2 + y^2) \, dx \, dy = \int_0^1 \left[\frac{1}{2} x^3 + \frac{3}{2} x y^2 \right]_0^1 \, dy = \int_0^1 \frac{1}{2} + \frac{3}{2} y^2 \, dy = 1.$$

2. Here's the visualization

The pdf is not constant so we must compute an integral

$$P(A) = \int_{.3}^{1} \int_{.5}^{1} 4xy \, dy \, dx = \int_{.3}^{1} \left[2xy^2 \right]_{.5}^{1} \, dx = \int_{.3}^{1} \frac{3x}{2} \, dx = \boxed{0.525}.$$

(continued)

Solutions 3, 4, 5

4.

$$F(x,y) = \int_0^y \int_0^x \frac{3}{2} (u^2 + v^2) \, du \, dv = \boxed{\frac{x^3 y}{3} + \frac{x y^3}{3}}$$

$$f_X(x) = \int_0^1 \frac{3}{2} (x^2 + y^2) \, dy = \left[\frac{3}{2} x^2 y + \frac{y^3}{2} \right]_0^1 = \left[\frac{3}{2} x^2 + \frac{1}{2} \right]$$
$$P(X < .5) = \int_0^{.5} f_X(x) \, dx = \int_0^{.5} \frac{3}{2} x^2 + \frac{1}{2} \, dx = \left[\frac{1}{2} x^3 + \frac{1}{2} x \right]_0^{.5} = \left[\frac{5}{16} \right].$$

5. To find the marginal cdf $F_X(x)$ we simply take y to be the top of the y-range and evalute F:

$$F_X(x) = F(x,1) = \frac{1}{2}(x^3 + x).$$

Therefore $P(X < .5) = F(.5) = \frac{1}{2}(\frac{1}{8} + \frac{1}{2}) = \boxed{\frac{5}{16}}.$

Solution 6

6.
$$F(3.5, 4) = P(X \le 3.5, Y \le 4)$$
.

$X \backslash Y$	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

Add the probability in the shaded squares: F(3.5, 4) = 12/36 = 1/3.

Independence

Events A and B are independent if

 $P(A \cap B) = P(A)P(B).$

Random variables X and Y are independent if

$$F(x,y)=F_X(x)F_Y(y).$$

Discrete random variables X and Y are independent if

$$p(x_i, y_j) = p_X(x_i)p_Y(y_j).$$

Continuous random variables X and Y are independent if

$$f(x,y)=f_X(x)f_Y(y).$$

Concept question: independence I

Roll two dice: X = value on first, Y = value on second

$X \backslash Y$	1	2	3	4	5	6	$p(x_i)$
1	1/36	1/36	1/36	1/36	1/36	1/36	1/6
2	1/36	1/36	1/36	1/36	1/36	1/36	1/6
3	1/36	1/36	1/36	1/36	1/36	1/36	1/6
4	1/36	1/36	1/36	1/36	1/36	1/36	1/6
5	1/36	1/36	1/36	1/36	1/36	1/36	1/6
6	1/36	1/36	1/36	1/36	1/36	1/36	1/6
$p(y_j)$	1/6	1/6	1/6	1/6	1/6	1/6	1

Are X and Y independent? 1. Yes 2. No

answer: 1. Yes. Every cell probability is the product of the marginal probabilities.

Concept question: independence II

Roll two dice: X = value on first, T = sum

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12	$p(x_i)$
1	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	0	1/6
2	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	0	1/6
3	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	0	1/6
4	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	0	1/6
5	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	0	1/6
6	0	0	0	0	0	1/36	1/36	1/36	1/36	1/36	1/36	1/6
$p(y_j)$	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36	1

Are X and Y independent? 1. Yes 2. No

answer: 2. No. The cells with probability zero are clearly not the product of the marginal probabilities.

Concept Question

Among the following pdf's which are independent? (Each of the ranges is a rectangle chosen so that $\int \int f(x, y) dx dy = 1$.)

i) $f(x, y) = 4x^2y^3$. ii) $f(x, y) = \frac{1}{2}(x^3y + xy^3)$. iii) $f(x, y) = 6e^{-3x-2y}$

Put a 1 for independent and a 0 for not-independent.

- (a) 111 (b) 110 (c) 101 (d) 100
- (e) 011 (f) 010 (g) 001 (h) 000

answer: (c). Explanation on next slide.

Solution

(i) Independent. The variables can be separated: the marginal densities are $f_X(x) = ax^2$ and $f_Y(y) = by^3$ for some constants *a* and *b* with ab = 4.

(ii) Not independent. X and Y are not independent because there is no way to factor f(x, y) into a product $f_X(x)f_Y(y)$.

(iii) Independent. The variables can be separated: the marginal densities are $f_X(x) = ae^{-3x}$ and $f_Y(y) = be^{-2y}$ for some constants *a* and *b* with ab = 6.

Measures the degree to which two random variables vary together, e.g. height and weight of people.

X, Y random variables with means μ_X and μ_Y

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)).$$

Properties of covariance

Properties

- 1. Cov(aX + b, cY + d) = acCov(X, Y) for constants a, b, c, d.
- 2. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y).$
- 3. Cov(X, X) = Var(X)

4.
$$\operatorname{Cov}(X, Y) = E(XY) - \mu_X \mu_Y$$
.

- 5. If X and Y are independent then Cov(X, Y) = 0.
- 6. **Warning:** The converse is not true, if covariance is 0 the variables might not be independent.

Concept question

Suppose we have the following joint probability table.

We compute the covariance using the following steps.

1.
$$E(X) = 0$$
 $E(Y) = 1/2$

2.
$$E(XY) = -1/4 + 1/4 = 0$$

3. Therefore Cov(X, Y) = E(XY) - E(X)E(Y) = 0.

Because the covariance is 0 we know that X and Y are independent

Concept question

Suppose we have the following joint probability table.

We compute the covariance using the following steps.

1.
$$E(X) = 0$$
 $E(Y) = 1/2$

2.
$$E(XY) = -1/4 + 1/4 = 0$$

3. Therefore Cov(X, Y) = E(XY) - E(X)E(Y) = 0.

Because the covariance is 0 we know that X and Y are independent

Key point: covariance measures the linear relationship between X and Y. It can completely miss a quadratic or higher order relationship.

Board question: computing covariance

Flip a fair coin 3 times.

Let X = number of heads in the first 2 flips

Let Y = number of heads on the last 2 flips. Compute Cov(X, Y),

Solution

From the marginals compute E(X) = 1 = E(Y). By the table compute

$$E(XY) = 1 \cdot \frac{2}{8} + 2\frac{1}{8} + 2\frac{1}{8} + 4\frac{1}{8} = \frac{5}{4}.$$

So $Cov(X, Y) = \frac{5}{4} - 1 = \boxed{\frac{1}{4}}.$

A more conceptual solution is on the next slide.

Alternative Solution

Use the properties of covariance.

 X_i = the number of heads on the *i*th flip. (So $X_i \sim \text{Bernoulli}(.5)$.)

$$X = X_1 + X_2$$
 and $Y = X_2 + X_3$.

Know $E(X_i) = 1/2$ and $Var(X_i) = 1/4$. Therefore $\mu_X = 1 = \mu_Y$. Use Property 2 (linearity) of covariance

$$Cov(X, Y) = Cov(X_1 + X_2, X_2 + X_3)$$

= Cov(X₁, X₂) + Cov(X₁, X₃) + Cov(X₂, X₂) + Cov(X₂, X₃).

Since the different tosses are independent we know

$$Cov(X_1, X_2) = Cov(X_1, X_3) = Cov(X_2, X_3) = 0.$$

Looking at the expression for Cov(X, Y) there is only one non-zero term

$$\operatorname{Cov}(X,Y) = \operatorname{Cov}(X_2,X_2) = \operatorname{Var}(X_2) = \boxed{\frac{1}{4}}$$

We'll stop here and finish the remainder of these slides in the next class.

Correlation

Like covariance, but removes scale.

The correlation coefficient between X and Y is defined by

$$\operatorname{Cor}(X, Y) = \rho = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}.$$

Properties:

1. ρ is the covariance of the standardized versions of X and Y.

2. ρ is dimensionless (it's a ratio).

3. $-1 \le \rho \le 1$. $\rho = 1$ if and only if Y = aX + b with

a > 0 and $\rho = -1$ if and only if Y = aX + b with a < 0.

Real-life correlations

- Over time, amount of Ice cream consumption is correlated with number of pool drownings.
- In 1685 (and today) being a student is the most dangerous profession.
- In 90% of bar fights ending in a death the person who started the fight died.
- Hormone replacement therapy (HRT) is correlated with a lower rate of coronary heart disease (CHD).

Discussion is on the next slides.

Real-life correlations discussion

- Ice cream does not cause drownings. Both are correlated with summer weather.
- In a study in 1685 of the ages and professions of deceased men, it was found that the profession with the lowest average age of death was "student." But, being a student does not cause you to die at an early age. Being a student means you *are* young. This is what makes the average of those that die so low.
- A study of fights in bars in which someone was killed found that, in 90% of the cases, the person who started the fight was the one who died.

Of course, it's the person who survived telling the story.

Continued on next slide

(continued)

• In a widely studied example, numerous epidemiological studies showed that women who were taking combined hormone replacement therapy (HRT) also had a lower-than-average incidence of coronary heart disease (CHD), leading doctors to propose that HRT was protective against CHD. But randomized controlled trials showed that HRT caused a small but statistically significant increase in risk of CHD. Re-analysis of the data from the epidemiological studies showed that women undertaking HRT were more likely to be from higher socio-economic groups (ABC1), with better-than-average diet and exercise regimens. The use of HRT and decreased incidence of coronary heart disease were coincident effects of a common cause (i.e. the benefits associated with a higher socioeconomic status), rather than cause and effect, as had been supposed.

Correlation is not causation

Edward Tufte: "Empirically observed covariation is a necessary but not sufficient condition for causality."

Overlapping sums of uniform random variables

We made two random variables X and Y from overlapping sums of uniform random variables

For example:

$$X = X_1 + X_2 + X_3 + X_4 + X_5$$
$$Y = X_3 + X_4 + X_5 + X_6 + X_7$$

These are sums of 5 of the X_i with 3 in common.

If we sum r of the X_i with s in common we name it (r, s).

Below are a series of scatterplots produced using R.

Scatter plots

(1, 0) cor=0.00, sample_cor=-0.07

(5, 1) cor=0.20, sample_cor=0.21

(2, 1) cor=0.50, sample_cor=0.48

(10, 8) cor=0.80, sample_cor=0.81

May 28, 2014 38 / 41

Concept question

Toss a fair coin 2n + 1 times. Let X be the number of heads on the first n + 1 tosses and Y the number on the last n + 1 tosses.

If n = 1000 then Cov(X, Y) is: (a) 0 (b) 1/4 (c) 1/2 (d) 1 (e) More than 1 (f) tiny but not 0

<u>answer:</u> 2. 1/4. This is computed in the answer to the next table question.

Board question

Toss a fair coin 2n + 1 times. Let X be the number of heads on the first n + 1 tosses and Y the number on the last n + 1 tosses.

Compute Cov(X, Y) and Cor(X, Y). As usual let X_i = the number of heads on the *i*th flip, i.e. 0 or 1. Then

$$X = \sum_{1}^{n+1} X_i, \qquad Y = \sum_{n+1}^{2n+1} X_i$$

X is the sum of n + 1 independent Bernoulli(1/2) random variables, so

$$\mu_X = E(X) = \frac{n+1}{2}, \text{ and } Var(X) = \frac{n+1}{4}.$$

Likewise, $\mu_Y = E(Y) = \frac{n+1}{2}$, and $Var(Y) = \frac{n+1}{4}.$
Continued on next slide.

Solution continued

Now,

$$Cov(X, Y) = Cov\left(\sum_{1}^{n+1} X_i \sum_{n+1}^{2n+1} X_j\right) = \sum_{i=1}^{n+1} \sum_{j=n+1}^{2n+1} Cov(X_i X_j).$$

Because the X_i are independent the only non-zero term in the above sum is $Cov(X_{n+1}X_{n+1}) = Var(X_{n+1}) = \frac{1}{4}$ Therefore,

$$\operatorname{Cov}(X,Y) = \frac{1}{4}.$$

We get the correlation by dividing by the standard deviations.

$$Cor(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y} = \frac{1/4}{(n+1)/4} = \frac{1}{n+1}$$

This makes sense: as n increases the correlation should decrease since the contribution of the one flip they have in common becomes less important.

MIT OpenCourseWare http://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.